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This is a six-dimensional search, which is time-consuming even on modern computers. Fortunately, the
orientation and position searches can be done separately – with the orientation search first. So how do we
actually know when we have found the correct position and orientation? As we rotate and move the model in
the unit cell, the calculated structure factors Fcalc change. We can calculate the correlation between the
observed intensities (Iobs) and the ‘calculated intensities’ which are calculated as FcalcFcalc

! . The maximal
correlation should correspond to the correct position. When the model is correctly positioned, we then have
not only structure factors F calcj j but also phases for each reflection !calc using Equation (14). Using these phases,
which are not quite the correct phases for the structure being investigated (because the model is not correct in
detail, cf Figure 15), but close, we can calculate an electron density map. This map has at least some of the
features of the real molecule.

9.03.10 The Electron Density Map

Once we have measured the structure factor amplitudes in a diffraction experiment and obtained a phase for
each, we can calculate the electron density function using a formula like this:
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How Fhkl and !hkl are derived will depend on how the phases were derived: experimentally or by molecular
replacement. This three-dimensional function has a value everywhere in the unit cell, but for practical reasons
its value is calculated at selected grid points, and is usually represented as an isocontour surface14 at a given
value. Figure 27 shows such a surface represented by a chicken wire model contoured at a level of 0.39
electrons Å&3 or one standard deviation.
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Figure 26 The effect of resolution on FTs. (a) A picture of a duck and its FT. (b) A back transform of the duck using only
the low-resolution terms of the FT. Only the general shape of the duck is discernible; the details are lost. Reproduced from
the web-based book ‘Book of Fourier’, University of York, UK, with permission from Kewin Cowtan; reimplemented by
I. Karonen.

14 An isocontour surface is the collection of points with the same value of the function in question. A two-dimensional example is a weather
map, where the points on the isobars all have the same value of pressure. The electron density function is three-dimensional, so we have
surfaces instead of curves.
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Model Bias

• Phases dominate the 
appearance of the map

• Phases are calculated 
from the model!

Duck amplitudes, 
cat phases
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The resolution of the data available affects the appearance of the maps dramatically – and thus what can be
understood from them. Figure 29 shows the same map calculated at various resolutions; at 3 Å the side chain
positions can be distinguished, but not their conformation except for very large residues, like the tryptophan in
the figure. At 2.0 Å, on the other hand, the side chain conformations are clearly identifiable and water molecules
are seen, while at 1.1 Å, both the benzene and indole rings have holes in them, and the positions of the protons
on the side chains become visible. In addition, as was discussed above (Figure 15), the phases dominate the
appearance of the electron density map, so even a high-resolution map with poor phases can be difficult to
interpret.

To avoid the model bias problem, various kinds of electron density maps are calculated as the structure is
solved, and are often presented in publications involving macromolecular structures. To evaluate a structure or
structural paper critically, one has to inspect the maps. A simple Fourier map with experimental Fobsj js as
amplitudes and model !calcs is never used in practice. It has terrible model bias because, as mentioned above,
the phases dominate the appearance of the maps. To reduce this, maps these days are also weighted by a factor
"A related to the coordinate errors in the model. Often amplitudes such as 2 Fobsj j – Fcalcj j are used instead of
Fobsj j, because this increases the size of electron density peaks due to differences between the Fobsj js and
Fcalcj js.15 Those differences are due to errors in the model; in other words, a map calculated with 2 Fobsj j – Fcalcj j
for amplitudes and !calc for phases will have less model bias than one calculated with Fobsj j for amplitudes and

(a) (b)

(c)

Figure 29 A 2Fobs–Fcalc electron density map around a tryptophan residue in Aspergillus flavus urate oxidase contoured
at 1.5" level calculated at (a) 3.0 Å (b) 2.0 Å, and (c) 1.1 Å resolution (M. Spano, unpublished).

15 The formula is this, where Fobsj j and Fcalcj j are observed and calculated amplitudes, and the phase of the wave is given by !calc.
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!calc for phases. The actual form of the (complex) structure factor is F ¼ ð2m Fobsj j –D Fcalcj jÞei!calc , where,
based on the expected error in the model, m and D differ from one. This minimizes the effect of model bias.18

A difference map with Fobsj j – Fcalcj j as amplitudes helps to identify discrepancies between the observed and
calculated data. A negative peak (a hole) in the difference electron density map indicates something in the
model that is not supported by the experimental data (Figure 30), while a positive peak indicates some feature
in the data that is not in the model (Figure 30). As difference maps by definition subtract out all the real
features currently accounted in our model, they are noisy, with many peaks and holes at the level of one to two
standard deviations ("). We thus interpret only peaks that are above 3". Difference maps are often presented as
evidence of the presence of atoms or molecules not covalently bound to the macromolecule, such as a bound
ligand.

Another method of reducing model bias is the omit map. A part of the model of which we are uncertain, such
as a ligand or a loop region, is omitted from the model. The structure is then refined with this part left out and
the phases calculated. The omitted part should nonetheless appear in the map, provided it is a real feature of the
molecule.

9.03.11 Model Building and Refinement

Let us turn to the other part of the process: what do we do with our electron density map once we are
certain that the initial solution to the phase problem is as correct as possible – that the map cannot be
improved? We interpret the electron density map in terms of a molecular model: of atoms at given positions
x, y, z. For a protein, this means following the path of the polypeptide backbone through the map; this is
called a main chain trace. Following this, we add all the other chemical components we know about: side
chains, water molecules16 and, if present, prosthetic groups, small molecule ligands, metal ions, and so on.
If data are available to sufficiently high resolution and the starting phases are good, the building of the
protein can be automated, but usually it has to be done manually. If the phases originate from molecular
replacement, an initial model is already available and only needs to be modified – with the model bias
caveat mentioned above.

Figure 30 The mjFobsj–DjFcalcj map around Phe331 of the second PDZ domain of SAP97 contoured at –3" (red) and 3"
(green) after misplacing the side chain. The positive density (green) shows where the side chain should be and the negative
density (red) shows where atoms should be removed.

16 Not all solvent molecules are disordered; some occupy the same position in all unit cells and hence show up in the map. These ordered
waters can be structurally or functionally important.
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Crystallographic refinement

• Optimise calculated scattering from model to 
fit data

• Prior chemical knowledge → Restrain bond 
lengths & angles

• Model the disorder of scatterers 



Modelling disorder –

Atomic Displacement Factors

B = 8π2U 

B (Å2) √U (Å)

10 0.36

20 0.50

30 0.62

40 0.71

50 0.80



Crystallographic refinement – Data vs. 
parameters

1.Data
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2.Parameters 

2.1.Coordinates (3/atom)

2.2.Atomic Displacement Factors (1/atom isotropic, 6/
atom anisotropic)

2.3.Occupancies (1/atom)
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The initial model is never the best obtainable but, in order to improve it, we need to know how to assess and
compare its correctness. By far the best-known and most widely used measure is the crystallographic residual or
R-factor:

R ¼
P

h;k;l Fobsj j – Fcalcj j½ #
P

h;k;l Fobsj j½ # ð16Þ

where Fobsj j are the observed amplitudes and Fcalcj j the amplitudes calculated from the model. The R-factor for
a model that exactly matches the calculated structure factors would be 0, and for a completely random model it
would be 0.59. However, a static atomic model is not a very accurate description of the actual contents of the
unit cell, and so the R-factor never reaches zero even for good models; it is only a rough guide to the correctness
of the structure. It does, however, allow us to compare the fit of two models to the experimental diffraction data
and see which is better.

Thus, how can the initial model be improved? When a model is fitted to the observed data, the errors are
often assumed to be normally distributed, and the statistically best fit is then obtained by minimizing the sum of
the squared differences between the data points ( Fobsj j) and the values predicted by the model ( Fcalcj j). This is
called crystallographic refinement. (This is exactly the mathematical argument behind the linear regression
formula for finding the best line through a set of points: we write a function:

y ¼ mx þ c þ " ð17Þ

where " is a normally distributed error function.) The method of least-squares refinement is still used in small
molecule crystallography, but in macromolecular crystallography, maximum likelihood refinement is almost
exclusively used nowadays. The approximation that the errors are normally distributed is actually not very
good, because the phases are not measured. Maximum likelihood refinement gives, as a final model, the one that
is most likely to have produced the data that was actually measured.17 This reduces model bias and the model
produced is not the same as the model that minimizes the (Fobs' Fcalc)

2 differences.
Whether we use maximum likelihood or not, we need to optimize the three positional coordinates x, y, z and

a temperature factor B (discussed below) for each atom. This is analogous to solving a system of linear equations
and, as in that or any optimization problem, the number of observations must at least equal the number of
variables or parameters. Usually the observations are not without error so, in order to arrive at a reliable result,
the problem has to be overdetermined. There must be more observations than parameters. For macromolecular
structure refinements, the number of observations (the observations are the individual reflection, the number of
which is determined by the resolution of the data) is very rarely sufficient. Again, we take prior chemical
knowledge from studies of small organic molecules about what the bond lengths, angles, and planar fragments
(such as aromatic rings) should be. We then keep the model close to these values during refinement. The
process is called restrained refinement, and the properties being used (lengths, angles, and so forth) are called
restraints. This effectively reduces the number of parameters because the atoms are no longer free to move
independently during refinement.18 The problem is thus more overdetermined. The restraints may be
formulated either as target values of the geometrical parameters or pseudo-energies. The progress and
convergence of the refinement can be monitored by the change in the R-factor.

The problem with the R-factor is that it almost always decreases as refinement progresses, even if the change
introduced is incorrect. This is expected; we are, after all, minimizing the difference between Fobs and Fcalc –
precisely what the R-value measures. A way around this is the Rfree-value, which is an independent indicator of
structure correctness. Before refinement starts, the observed reflections are divided into a working set used for
refinement and a test set (typically 5–10% of the data), unused during refinement. Rfree is calculated with only
the reflections of the test set. It is therefore independent of the bias inherent in the normal R-value, called in this
case Rwork.

17 If the description of maximum likelihood refinement sounded like a statement in Bayesian statistics, it was supposed to. You can find
more out about Bayesian statistics in crystallographic refinement from McCoy19 or Tronrud20.

18 If this is not clear, imagine the benzene ring in phenylalanine. To a first approximation, all the atoms in the ring move together, so instead
of six atoms times four parameters (x, y, z, B), or 24 parameters, restrained refinement reduces the number of parameters to about seven:
x,y,z for the center of mass of the benzene ring, !,",# to specify its orientation, and a temperature factor.
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