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Why Neutrons?

Neutrons have special properties ...

Charge neutral Magnetic moment (spin)

Deeply penetrating Probe of magnetism
12
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Hydrogen and water Understanding
distribution in fuel cells supercondutors

Nuclear scattering
Sensitive to light
elements and isotopes

Understanding drug
binding and enzyme
action
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Geometry of Motion
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Neutrons reveal
structure and dynamics
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The pattern also shows how atomic dipoles are
oriented in magnetic materials, since neutrons are
affected by magnetic forces. Shull also made use of

this phenomenon in his neutron diffraction technique. o

e s eemed

~es . studied how atomic structures in liquids
D T change with time.

FHon snd 1WA & wa e s de muimm of
B L Rl TR,

e rm——
Thummnds o wwwe b o o g 4 A -y
D i . o B
Mot d mars Lonting srdle s by s
o = phoww! w famge du UV i A A e
B T R N ]
- — e s -
R R N e
——— ] e e s Vb Bt g o P
M A i




X-Rays and Neutrons

Different views of the same thing

neutron

Due to the different interaction and
cross sections, neutrons and x-rays
provide complementary information

Courtesy of the NIAG group, PSI, Switzerland.
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X-Rays and Neutrons
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10 eV — 100 keV
0.01 nm to 100 nm
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X-ray cross section
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Neutron Cross section

1.674928 x 1027 kg (1839 electrons)
1/2

-1.9130427 pn

0.1 meV-0.5eV

0.0l nmto 3 nm
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(neutrons/cm2/s/sr/A)



Production of neutrons

Fission

Uranium 235

slow neutron

fission of the
excited nuclens

Fission of uranium
in nuclear reactor

2-3 neutrons per process

chain reaction
triggered by
moderated neutrons

Spallation on target
using proton accelerator

30+ neutrons per process

Spallation

Intranukleare Kaskade

schnelle
Primarteilchen

~1 Giga-
Elektronenvalt

hach angeregter Kern

Zersplitterung




Neutron Source Brightness @
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(Updated from Neutron Scattering, K. Skold and D. L. Price, eds., Academic Press, 1986)




How it works

TARGET
MONOLITH ]

The technology

i @
TONNES
TARGET WHEEL

NEUTRON
BEAMS

High energy neutrons are
released from the target 0

EXPERIMENTAL
HALL 1

SCIENTIFIC
INSTRUMENT

ACCELERATOR
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Particles are They are accelerated ...ujntil theé/ :
produced in to 96% of the speed hit the target
the ion source of lightin the 600 m : '
long accelerator... LABORATORIES

EXPERIMENTAL : :
HALL 2 : :
EXPERIMENTAL SCIENTIFIC
HALL 3 INSTRUMENT
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The neutrons are slowed
down, focused and sent
down the beamlines

: : WORKSHOPS
ESS CAMPUS

SAMPLE

=

When the neutrons arrive at the
instruments, the researchers can
use them to explore materials
down to an atomic level



High Power 5SMW Proton Accelerator
e A

75 keV 3.6 MeV 90 MeV 216 MeV 571 MeV 870 MeV
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The ESS accelerator was designed and is built by a collaboration of 23 institutes and universities in Europe

More then 50% of the total budget is delivered as In-kind with most systems being IK deliveries. The main exceptions are
the cryo plants, the 704 MHz klystrons and modulators.

ESS accelerator division is responsible for functional requirements, coordination of work, installation including
infrastructure, testing & commissioning and operation.

The linac shall in the full scope deliver 5 MW at 2 GeV, 14 Hz with 2.86 ms long pulses

For Beam on Dump and Ready for Beam on target the accelerator will operate at 572 MeV able to put 1.4 MW on the
target with nominal duty-cycle. Planned with the medium beta elliptical section , but two high beta will be used to

compensate for medium beta cavities needing reprocessing

For End-Of-Construction in 2027, an additional cryomodules will be installed and powered enabling operation at 2 MW,
870 MeV with nominal duty cycle

The remaining cryomodules will be installed in the tunnel during shutdowns but not powered with RF. Control and
operation of e.g. tuners and cryogenics will be available for all cryomodules.




Target Wheel
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Getting the right energy

The neutrons generated Moderation at reactor : water, liquid
must often be moderated hydrogen or liquid deuterium

to lower their energy

(increase their wavelength) Moderation at spallation source : water,
before they are used in liquid hydrogen or solid methane
scattering experiments

Boltzmann — — De Broglie

mm it

cold 0.1-10 1-120
thermal 5-100 60-1000 4-1
hot 100-500 1000-6000 1-0.4

Proton beam in
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Monochromatic” vs Time-of-Flight @

Continuous Source Pulsed Source
"Monochromatic” Time-of-Flight

Intensity
at Source

Time Time

Intensity
at Detector

Time Time

Some of the neutrons all of the time All of the neutrons some of the time

4
Q) = gsinﬁ

Varying angle to access different Q values Varying angle and wavelength to access
different Q values
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The Time-ot-Flight (TOF) Methoao

distance
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Pulsed source time structures (A=5A) @
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Long-pulse Performance and Flexibility @
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Neutron Science Instruments at ESS @

1 Imaging, 2 SANS, 2 Reflectometers, 5 Spectrometers, 5 Diffractometers, 1 Test Beamline
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» Expertise from all around Europe

* Instrument components designed, built, and
tested at partner institutes

* Instruments assembled and integrated at ESS

« ESS provides core - labs, data acquisition,
processing and management, engineering
support, electrical, utilities, safety systems,
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The ESS journey

~Consortium
13 founding tount
More than 40 par
More than 130 collaborating |nst|tut|'c-'»ms e
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| ESS design update
phase complete

European design
of ESS completed




Towards the User Programme

Instrument Commissioning

e e e
Instrument

Potential Testing End-to Enters User
Involvement _| Standard Expe Programme

of
External Experts

Testing and
Calibratiog
Component

Commissioning
with Neutrons

Safety Readiness
| Review Demonstrate Demonstrate Demonstrate
that we can that we can instrument
System produce perform full capabilities with
Acceptance | @ correct results experiments new science
Review § J\_ P Y,

Early Science

Cold Commissioning Hot Commissioning

User Programme

NMX Timeline BOT +6 months (~May 2026) BOT+12 months ~October 2026 BOT+18 months ~May 2027
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Shutdown 2%
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2000 kW at 870 Mev 10 % flux 3000 KW at870 May 1V Yo flux

20




Summary @

NMX is expected to be ready for early science commissioning experiments in late 2026
and user programme access by mid 2027

Now is time to think about what experiments might be done and begin collaborations
and sample preparation

| look forward to hearing the ideas today!
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