

The NMX Macromolecular Diffractometer – design and expected performance

Early Science on the NMX Macromolecular

Diffractometer

2024-08-26

Esko Oksanen Instrument Scientist,

Macromolecular Crystallography

Challenges for neutron crystallography

- **Weak neutron sources**
	- Bigger crystals \rightarrow more diffracting volume
	- Use Laue geometry \rightarrow make all neutrons count
- **Incoherent scattering**
	- Exchange 1H to 2H (deuterium)
	- Produce perdeuterated protein

Oksanen, E *et al. J. R. Soc. Interface* **2009**, *6 Suppl 5*, S599-610.

EUROPEAN SPALLATION SOURCE

 0.5 mm

Incoherent scattering

EUROPEAN SPALLATION SOURCE

• Incoherent scattering contributes *only* to background!

Some scattering cross sections

Nucleus	σ coh	σ incoh (10^{-2})
	(10^{-28} m^2)	$\binom{8}{10}$
1H	1,76	82,03
2H	5,59	7,64
12C	5,56	O
14N	11,03	0,5
16 \subset	4,23	Ŋ

Phase change random in scattering

NMX High-level Requirements – starting point

FUROPEAN SDALLATION SOLIRC

- A typical system to be studied would be a 30-40 kDa protein
- Unit cell edges 100-150 Å, up to 300 Å
- Realistic dmin \sim 1.8 Å, rarely < 1 Å
- Crystal size $~0.01$ -0.1 mm³
- Data set in one day

High-level Scientific Requirements

1. The instrument shall allow data collection from crystals with unit cell repeats > 300 Å.

2. The instrument shall allow data to be collected to a d_{min} of 1.5 Å.

3. The instrument shall match the size of the neutron beam to the size of the sample.

4. The instrument shall match the divergence of the neutron beam to the mosaicity of the sample.

5. The instrument should maximise the signal-tobackground (S/B) ratio of the Bragg reflections.

6. The instrument should allow data collection from crystals of < 0.01 mm³ volume

Helliwell, J.R. et al. J. Appl. Cryst. (1989) 22, 483−497

TOF Laue crystallography

At pulsed spallation sources we can resolve time-of-flight \rightarrow energy Can resolve harmonic

and spatial overlaps Spreads background in many time bins

What wavelength to use?

EUROPEAN SPALLATION SOURCE

$$
I_{pk} = t\varphi(\lambda)\epsilon(\lambda)\kappa \qquad \frac{V_{cryst}\lambda^4}{2V_{cell}^2sin^2\theta} \ T_{DW}\langle |F_{hkl}|^2\rangle
$$

 I_{pk} = integrated intensity for an average Bragg peak (n) = duration of measurement (s), $t =$ duration of measurement (s) $\phi(\lambda)$ = incident spectral flux at sample (n.cm-2.s-1.Å-1) $\epsilon(\lambda)$ = detector efficiency $k =$ conversion factor 1×10^{24} $(cm^2.bn^{-1})$

```
N<sup>S</sup> = no. of unit cells in sample,
2\theta = Bragg angle for reflection,
vcell = unit cell volume (\AA^3)vcryst = crystal volume (\AA^3)T_{DW} = temperature factor
|F<sub>hkl</sub>|<sup>2</sup> = structure factor modulus of reflection hkl squared (bn)
```
Air absorption is not a problem \rightarrow Go for long wavelengths!

Moderator spectra

EUROPEAN

SPALLATION SOURCE

 \Rightarrow

Time-of-flight Laue diffractometers – length and TOF resolution

FUROPEAN SPALLATION SOURCE

71.4 ms

Crystallography with long wavelengths

Resolution sphere Blind zone $2\theta_{\text{max}}$ s_0 Ewald sphere Ewald sphere Ewald sphere Ewald sphere Ewald sphere $|$ **s** $|$ = $|$ **s**₀ $|$ = λ⁻¹ Ewald sphere

Multi-axis goniometry

Large solid angle detectors The instrument shall allow data to be collected to a d_{min} of 1.5 \AA

Scattering power increases with wavelength

- Air scattering/ absorption is not a problem with neutrons
- **•Long wavelengths** require large 2θ
- **Blind zone gets** large

NMX – conceptual view

EUROPEAN SPALLATION SOURCE

• Gd-GEM detector

NMX engineering design – neutron guide

EUROPEAN SPALLATION SOURCE

Endstation – Robotics

**EUROPEAN
SPALLATION
SOURCE**

Endstation

EUROPEAN SPALLATION SOURCE

Advanced Research Instrumentation for Neutrons & X-rays

A molecular virion of life
Une virion moléculaire du vivant

Multi-axis goniometry 15

Large, adjustable solid angle

clusters_detector.pos1:clusters_detector.pos0 300_r -800

50 x 50 cm, effective pixel size 400 µm

Spreading background over time-of-flight

EUROPEAN SPALLATION SOURCE

Flux at sample – time averaged

FUROPEAN SDAI I ATION

- By Monte Carlo simulation 5 x 10⁸ n/s/cm² at ±0.2° divergence
- LADI-III 5 x 10⁷ n/s/cm², divergence unclear Factor 10

NMX makes full use of the long pulse and high-brilliance moderators

Signal/background gain from TOF is difficult to quantify – depends on crystal, but at least factor 10

Should be realistic to collect 0.1 mm³ crystal in < 1 day The instrument should allow data collection from crystals of < 0.01 mm3 volume

Crystal size or collection time? (ess)

The instrument should allow data collection from crystals of < 0.01 mm3 volume

Should be realistic to collect 0.1 mm³ crystal in \leq 1 day

- 1. Do we want to push minimum crystal size and collect data for weeks?
- 2. Do we want to push unit cell size and collect data for weeks (on a large crystal)?
- 3. Do we want to push throughput and collect data in a day from larger crystals? Software!

Choice not limited by design decisions

Software & instrument throughput

- Data collection strategy software can save significant beamtime (or get better completeness in the same time)
- Work flow automation can save considerable time when testing larger numbers of crystals (e.g. evaluate resolution from test images)

What limits neutron crystallography today?

- Crystal size needed is still big -0.01 mm³ is a lot easier to get to than 0.1 mm^3
- Data collection is long wrt available beam time – only few data sets can be collected world-wide
- Beam time allocation is not always matching availability of crystals

Support labs vs. user expertise

- Perdeuteration (in *E. coli*) is relatively easy for most crystallographers
- Growing large crystals is easy in some systems, but hard to know if size could not increase further
- Increasing crystal volume increases instrument throughput **a lot!**

LADI-III @ ILL

Acknowledgements

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

Questions?

[esko.oksanen@ess.eu](mailto:esko.oksanen@esss.se?subject=)