Neutron diffraction for deciphering lectin-glycan interactions in bacterial infection

Lukáš Gajdoš

ECM34

Glycans

Nieuwdorp M., et al. 2005

Lectins are proteins that can decode this complex "glycocode"

Lectins from pathogenic organisms

3

Pseudomonas aeruginosa

- Human **opportunistic** pathogen
- Lung infections (cystic fibrosis patients)
- Two soluble Ca²⁺-dependant lectins
- LecA (PA-IL), galactose-specific
- LecB (PA-IIL), fucose-specific
- Roles in attachement and biofilm formation
- Targets for novel antiadhesive glycomimetics

Imberty A., et al., 2014

Neoglycoprotein Glycocluster

Glycodendrimer

Glycopolymer

Dendronized polymers

rs Glyconanoparticles

Nanoemulsions

Pseudomonas aeruginosa

Lung infection

P. aeruginosa opportunistic bacteria

Protein-carbohydrate interactions

Galactose in LecA

details

Fucose in LecB

Wanted : Location of hydrogen atoms

H atoms "invisible" in X-ray structures

- Hydrogen atoms account for about half of all the atoms in proteins
- Critical roles in **biological functions** (enzyme mechanisms, ligand binding)
- Rarely observable in X-ray diffraction experiments

Neutrons as a diffraction probe

- Interaction with atomic **nuclei**
- Scattering varies with elements and even isotopes of the same element (H/D)
- Non-destructive probe (room-temperature data collection)

Need of perdeuteration

- Full replacement of all hydrogen (H) atoms by deuterium (D) atoms
- **Reduces** the large **incoherent** scattering of H (\sim 40 times larger than for D)
- Reduces the background and increases the signal-noise ratio
- Clearer visualization of neutron maps
- **Cancellation effects** limit visualization of CH_n groups

Perdeuterated protein, D₂O solvent

Courtesy of Prof. Trevor Forsyth

How to obtain perdeuterated biomolecules?

Adaptation of E.coli cells to deuterated medium

•

- **Production** of recombinant proteins **in D₂O** --- > D-Lab at ILL
- Fermentation (high cell-density cultures) of *E.coli*
- **Deuterated carbon source** (glycerol-d₈, glucose-d₁₂)

Innoculum for fermentation

How to obtain perdeuterated biomolecules?

Proteins:

Production of recombinant proteins in $D_2O --- > D$ -Lab at ILL High cell-density cultures

Sugars:

Glucose- d_{12} : grow plant/algae in D₂O and degrade cellulose

Synthetic chemistry « isotopic hydrogen-exchange technique »

Synthetic (glyco)biology

Methodology

E. coli adaptation to deuterated medium

Production of perdeuterated lectins/sugars

Protein/sugar purification

Structure refinement

Laue diffractometer LADI-III at ILL

- Institut Laue-Langevin (ILL) in Grenoble, France
- Quasi-Laue diffraction method (pink beam of neutrons)
- Large cylindrical neutron-sensitive image plate detector
- Data collection at room temperature

LecB-fucose neutron study

In vivo production of L-fucose-d₁₂ in *E. coli*

Extracellular medium

Fucose-producing strain of E. coli designed and enginereed by Dr. Eric Samain at CERMAV

Man-1-P Man-6-P cytoplasm manB manC manA GDP-Man GTP Fru-6-P gmd GDP 4-keto-6deoxyMan wcaG GDP **GDP-Fuc** catabolism a-1.2fucosvl transferase (2'fucosyllactose) Fuculose-1-P Gal^{β1}-4Glc Fucα1-2Galβ1-4Glc Gal + Glc fucosidase Glycerol Fucoșe Fuculose lacYGlycerol GalB1-4Glc Fucose (lactose)

Overexpressed genes manB: phosphomannomutase manC: Man-1-P-guanyltransferase gmd: GDP-Man 4,6-dehydratase wcaG: GDP-L-fucose synthase **α-1,2-fucosidase α-1,2-fucosyltransferase**

Knocked-out genes lacZ: β-galactosidase fucI: fucose isomerase fucP: fucose permease

Production, purification and characterization of L-fucose- d_{12}

Perdeuterated fucose in the LecB binding site

- Electron density (1.4σ)
- Neutron density (2.2σ)

H-bonding network and a low-barrier H-bond

- 4 direct H-bonds (orange dashed lines) with the protein + hydrophobic interaction
- Charged amino acid residues are non-protonated
- Delocalized electrons contribute to the overall net charge -2
- A low-barrier hydrogen bond formed in the proximity of calcium ions

Water network in the fucose binding site of LecB

Water molecules in four chains (A, B, C, D) in the neutron structure

Gajdos L. *et al.,* (2022) *Nat Commun*

Neutron structure of the apo LecB lectin

Neutron data collected on LADI instrument at the ILL (24h exposures, 2.1 Å resolution) X-ray data collected on BM-07 beamline at the ESRF Joint X-ray/neutron refinement undergoing

Perdeuterated LecB crystal

2Fo-Fc electron density map (blue) and 2Fo-Fc neutron scattering length density map (purple)

LecA-glycolipids neutron studies

Neutron diffraction studies to investigate how pathogens interact with human glycolipids

Globotriaosylceramide (Gb3) structure

Expression of the perdeuterated LecA lectin (D-LecA) followed by SDS-PAGE

Crystallization of LecA lectin

Neutron diffraction data collections from LecA

D-LecA/d-galactose

```
LADI
P2<sub>1</sub>
18h exposures
1.9 Å resolution
```

D-LecA/disaccharide

DALI I222 18h exposures 2Å resolution

X-ray diffraction data from LecA crystals

D-LecA/methyl- α -galactoside

D-LecA/disaccharide (galabiose?)

LecA/galatriose

D-LecA/d-galactose

Future plans

- PhD thesis of Theodore Arnaud
- New oligosaccharides producing strains (trisaccharides, tetrasaccharides) and their perdeuteration
- New protein targets such as **Shiga-like toxin 1 or 2** from enterohemorragic *E. coli* and **Factor H-binding protein** (Fhb) from *Streptococcus suis* that both bind to Gb3 cell receptors

Acknowledgements

Theodore Arnaud Matthew Blakeley Juliette Devos Anne Imberty Emeline Richard Annabelle Varrot Eric Samain

Sebastien Vidal Sophie Feuillastre

