Enhancing Structural Refinement of

Macromolecules obtained from

Neutron Crystallography

Lucrezia Catapano

ECM34 Satellite-Early Science on the NMX Macromolecular Diffractometer at the European Spallation Source

26th August 2024, Padova, Italy

Computational Structural Biology Group 既 Input EM Map Diffraction data (X-ray, Neutron, ED MRC Laboratory of Molecular Biology Software for macromolecular structure analysis Lucrezia Catapano^{1,2}, Paul Emsley¹, Fei Long¹, Robert A. Nicholls¹, Rangana Warshamanage¹, Keitaro Yamashita¹, Garib N. Murshudov¹ MRC Laboratory of Molecular Biology, Cambridge, UK, ²Randall Centre for Cell and Molecular Biophysics, King's College London, UK $model; data) \propto P(data; model) P(model)$ Research in the Computational Structural Biology Group focuses on the development of mathematical, statistical, and onal techniques to derive reliable atomic models from noisy and incomplete experimental data. We use Bayesian M statistics machinery to allow the joint use of data from several sources, such as stereochemical and structural prior ge, and data derived from crystallography and cryo-EM. Our group has developed such software tools as REFMACS alcot for atomic model refinement and updated map generation, AceDRC, ProSMART and UBG for the generation and ion of restraints RABES, an automatic molecular replacement pipeline, EMDA for map manpulation and Maximum Structural, Chemical Knowledge Likelihood map averaging: Coot for model building, validation, visualisation, and real-space refinement of atomic models of biological macromolecules. Our computational tools are distributed as a part of the CCP4 and CCP-EM suites. ...Model building & validation... Macromolecular refinement **REFMAC5** EMDA REFinement of MAC od method and some elements of Ba t-Oriented Toolkit for macr opy Data Analytical toolkit. It is a Python ing, model completion and validation. Particularly protein modelling using MX and cryo-EM data tics to perform full model refinement and map calculation library module for Electron Microscopy map and model manipulations (Warshamanage et al., 2022) designed for use with data from crysta Emsley et al. 2010 C5 has been adapted and extended to support data ment and validation for crystallography and single particle analysis. It is a Python package and star program for the refinement and map calculation of cryo-EM SPA structures. It implements a refinement pipeline using $f_{tot} = wf_{data} + f$ EFMAC5 (Yamashita et al., 2021) Colour by B facto $\mathcal{F} |F_{\alpha}(h)|, \alpha_{\alpha}(h)$ Molecular replacement BALBES solving protein structures using X-ray crystallographic data, which aims to integrate all components necessary for finding a solution structure by molecula Restraints generation 1 ong et al. 2008) ProSMART AceDRG Procrustes Structural Matching Alignment and Restraints Tool. It has LIBG generates restraints to help stabilise refinement of DNA/RNA models. Restraints are generated for base-pairs, two main purposes: conform ndent comparison of protein structures, and the generation of interatomic distance restraints fo and links. I tion about local chemical and ents derived from a small molecule stacking planes, sugar puckers, and other torsion angles nt use in (Brown et al 2015 毲

https://www2.mrc-lmb.cam.ac.uk/groups/murshudov/

MRC-Laboratory of Molecular Biology

Cambridge, UK

ОССР-ЕМ

Enhancing Structural Refinement of Macromolecules obtained from Neutron Crystallography

🋫 @lulu_catapano

Lucrezia Catapano¹, Fei Long¹, Keitaro Yamashita^{1,2}, Robert A. Nicholls¹, Roberto A. Steiner^{3,4}, Garib N. Murshudov¹

¹MRC Laboratory of Molecular Biology, Cambridge, UK, ²Research Center for Advanced Science and Technology, The University of Tokyo, Japan ³Randall Centre for Cell and Molecular Biophysics, King's College London, UK, ⁴Department of Biomedical Sciences, University of Padova, Italy

Hydrogen atoms represent a large fraction of the total atomic content of macromoleculas. They often play critical roles in enzyme catalysis, ligant recognition processes, and protein-protein interactions. However, their direct visualisation by diffraction techniques is challenging. Macromolecular X-erry crystallography affords the localitation of only the most ordered hydrogen atoms at (sub-)atomic resolution (uround 12. Å or higher). However, many hydrogen atoms of biochemical significance remain undetectable by this method. Officently, neuron diffraction methods enable the visualitation of most hydrogen atoms, spicially in the form of deuterium (PH) atoms at much more common resolution values (better than 23 Å). Thus, neuron crystallography abloging technical demanding, is denote the method of choice when direct information on protonation states sought. Nevel refinement protocols have been implemented in the CCP4 refinement software REMACS, for the refinement of structural models obtained from intervin crystallography.

Robert R. et al. (2024) Res.

GULLS & 121 -2208478121

References

Acknowledgement 🔤 🔶 CCP4 🖾 🖬

Neutron Crystallographic Refinement in 🔶 📿 🏹

Wednesday 28th of August

Poster ID: 613

First floor, panel nr. 28

Outline

- Hydrogen atoms in Structural Biology
- Basics of Neutron Crystallography
- Neutron refinement within REFMAC5
- Re-refinement of neutron PDB entries
- Neutron studies of iron binding protein FutA

H atoms account for ~50% of protein atoms ~35% of nucleic acid atoms

Key roles in enzyme chemistry

Ligand binding preferences

BBH-1 binding in M^{pro} active site Kneller, D. W., et al. (2022). *Nature Communications* 13, 2268.

Water molecules organisation

Water network in concanavalin A (PDB code:1XQN) Blakeley, M. P., et al. (2004). *PNAS* 101, 16405-16410.

Protonation & orientation

Protonation states of the active site of Toho-1 β-lactamase in complex with BZB Tomanicek, S. J., et al. (2013). *J. Biol. Chem.* 288, 4715-4722.

Hydrogen atoms 'invisible' in X-ray structures

X-rays interact with **electron cloud**

X-ray scattering (10^{-12} cm) proportional to Z

H atoms are **invisible** in electron density maps at typical resolutions **(2.0 Å)**

PDB code: 1TBT grey: $2mF_o$ - DF_c electron density map Fisher, Z., et al., (2005). *Biochemistry* 44, 1097-1105. Some H atoms are often **undetected** at (sub-)atomic resolution (<1.2 Å)

PDB code: 3KYU grey: $2mF_o$ - DF_c electron density map green: hydrogen-omitted mF_o - DF_c map Gardberg, A. S., et al., (2010). *Acta Cryst.* D66, 558–567.

Neutrons reveal H atom positions

- Neutrons interact with atomic **nuclei**
- Scattering permits a detailed discrimination of **isotopes**
- Non-destructive probe (room-temperature data collection)

neutron scattering length (b)

Neutrons reveal H atom positions

¹H/²H exchange:

Improve the **signal-to-noise** ratio

Reduce the **background scattering**

Clearer visualization of **neutron scattering density maps**

No cancellation effects (perdeuterated structures)

PDB code: 1CQ2 grey: $2mF_o - DF_c$ neutron scattering length density map green: deuterium-omitted $mF_o - DF_c$ map Shu, F., Ramakrishnan, V., & Schoenborn, B. P. (2000). *PNAS* 97(8), 3872–3877.

Neutron macromolecular crystallography

Limitations

- Low flux of neutron beams
- Long data collection time (several days or weeks)
- Large crystals (>0.1 mm³)
- Small number of neutron beamlines worldwide

Source PDB: (https://www.rcsb.org/) Date: 13th July 2024

Hydrogen density in EM

Electron scattering by H atom

$$f_e(s) = \frac{me^2}{8\pi h^2 \varepsilon_0} \frac{Z e^{-2\pi i s^T \Delta x} - f_X(s)}{s^2}$$

Mott-Bethe formula

green: hydrogen-omitted Fo - DFc maps

Apoferritin at 1.22 Å

GABA₄R at 1.7 Å

Nakane, T., et al. (2020). Nature 587, 152-156.

Hydrogen density in EM

Keitaro Yamashita

green: hydrogen omit weighted *F*_o-*DF*_c maps

β-galactosidase from *E. coli* at 1.9 Å PDB: 6cvm / EMD-7770 β-galactosidase from *T. maritima* at 2.0 Å PDB: 6s6z / EMD-10109

Bartesaghi, A., et al. (2018). Structure 26, 848-856.e843. Míguez Amil, S., et al. (2020). ACS Chem. Biol. 15, 179-188.

New developments in REFMAC5 for neutron refinement

Restraints for Macromolecular Refinement

Restraints help to ensure that the model is **chemically sensible**

They are organised in the **CCP4 Monomer Library**

35,298 monomers >100 of modifications and links

Vagin, A. A. et al., (2004). *Acta Cryst.* D60, 2184-2195 Nicholls, R. A. et al. (2021). *Acta Cryst.* D77, 712-726

Neutron studies in the Cambridge Structural Database (CSD)

	CSD-2009	CSD-2021	ratio 2021:2009
All	1213	2362	1.95
Organic	811	1452	1.79
With coordinates, $R \leq 0.10$	664	1220	1.84
With coordinates, $R \leq 0.10^*$	561	1068	1.90
With coordinates, $R \leq 0.075^*$	461	894	1.94
With coordinates, $R \leq 0.05^*$	302	604	2.00
Metal-organic	402	910	2.26
Powder studies	217	707	3.26

*Structures counted have no disorder and no residual coordinate errors

CSD-2021 neutron dataset analysis

647 organic compounds :

- non-polymeric
- without disorder
- with R-factors ≤ 0.075

Tools: ConQuest, Mercury

Fei Long

Quantum Mechanics (QM) calculations

- **2652** small molecules from DrugBank
- DFT calculations at B3LYP/6-311++G** level of theory
- Tools: AceDRG, GAMESS-US

		CSD-	2009			CSD-	2021			QM	[
	μ	σ	т	п	μ	σ	т	п	μ	σ	т	п
С(<i>sp</i> ¹)–Н	1.042	0.022	1.044	5	1.042	0.022	1.044	5	1.063	-	1.063	9
С(<i>sp</i> ²)–Н	1.082	0.013	1.084	109	1.083	0.015	1.085	163	1.087	-	1.085	538
С(<i>sp</i> ³)–Н	1.089	0.010	1.091	1118	1.087	0.010	1.092	1397	1.093	-	1.093	12985
C(ar)–H	1.083	0.017	1.085	721	1.084	0.018	1.085	1251	1.083	-	1.083	3906
С(<i>sp</i> ²)–N–H	1.013	0.010	1.012	141	1.014	0.012	1.013	177	1.010	-	1.009	1055
С(<i>sp</i> ³)–N–H	1.002	0.010	1.002	4	1.002	0.052	1.018	68	1.020	-	1.019	1172
С(<i>sp</i> ³)–О–Н	0.970	0.012	0.971	169	0.969	0.018	0.972	186	0.966	-	0.964	1229
S–H	1.338	-	1.338	1	1.338	-	1.338	1	1.345	-	1.345	83

The letters μ , σ , m and n represent the mean, standard deviation, median, and number of observations

STRUCTURAL

BIOLOGY

ISSN 2059-7983

Received 29 September 2016

Accepted 3 January 2017

The riding hydrogen model

- The concept of riding hydrogen model ('riding H') relies on the fact that the coordinates of most (but not all) H atoms in proteins can be unambiguously expressed through the coordinates of their covalently bound non-H atoms, known as 'parent' atoms.
- For routine refinement, the riding model is very efficient, for example, for amide H atoms in the protein backbone, for those bound to C^α atoms, for those attached to aromatic carbon atoms. These H atoms are often referred as 'fixed' H atoms.
- REFMAC5 generates riding H positions using the information from the CCP4-ML restraints. A H atom must be away from its parent at a distance equal to the 'ideal' distance and it must obey chirality and planarity rules.

Placing 'rotatable' hydrogen atoms

- 'Rotatable' hydrogen atoms: single hydrogen atoms with rotational degrees of freedom
- H atoms on *hydroxyl (-OH)* groups of Tyr, Thr, Ser and *thiol (-SH)* groups of Cys
- The accurate position of a 'rotatable' H atom can only be determined based on **experimental data**

Placing 'rotatable' hydrogen atoms

a program has been written using **GEMMI** that enables the automatic placement of these H atoms in **real-space** based on their fit to the density maps:

- 1. calculation of an H-omit **mFo-DFc** map by removing from the model the rotatable H atoms for Tyr, Ser, Thr and Cys residues.
- calculation of favourable H positions (two for Tyr; three for Ser, Thr and Cys) based on *parent atom positions and torsion angles.*
- optimisation of H positions by **best fit to the mFo-DFc** neutron scattering length density maps.

Rubredoxin 1.5 A, PDB code: 1VCX Kurihara, K., et., al. (2004). *PNAS*. 101, 11215-11220

Protonation states

Protonation states

- **Asp and Glu** side chains are predominantly deprotonated at physiological conditions, thus the CCP4-ML provides their component dictionary entries in the deprotonated forms.
- the imidazole of *His* is typically found in a singly protonated state at physiological pH, with the residue that can exist as either *Nε2* protonated tautomer or *Nδ1* protonated tautomer. The CCP4-ML provides the His component dictionary entry as doubly protonated.
- Within CCP4, the determination of protonation (or deprotonation) forms is achieved by applying **modifications** to the current monomer to ensure proper geometry is maintained during refinement

Protonation states

 Modifications (mmCIF) describing protonation of Asp, Glu and His are generated using AceDRG

protonation for Asp25 and Asp125 in HIV-1 Protease (PDB entry 6PTP) Kumar, M., et., al. (2020). *ACS Omega* 5, 11605-11617.

data_mod_list				
loop_ _chem_mod.id _chem_mod.name _chem_mod.comp_id _chem_mod.group_id ASP_prot "Protonation_of	f_ASP"	ASP	peptide	
data_mod_ASP_prot				
loop_ _chem_mod_atom.mod_id _chem_mod_atom.function _chem_mod_atom.atom_id _chem_mod_atom.new_atom_id _chem_mod_atom.new_type_symbol _chem_mod_atom.new_type_energy _chem_mod_atom.new_charge ASP_prot change ASP_prot change ASP_prot add	U Y OD2 OD2 OD1 OD1 . HD2	О О Н	0H1 0 H	0 0 0
<pre>loop_ _chem_mod_bond.mod_id _chem_mod_bond.function _chem_mod_bond.atom_id_1 _chem_mod_bond.atom_id_2 _chem_mod_bond.new_type _chem_mod_bond.new_value_dist _chem_mod_bond.new_value_dist _chem_mod_bond.new_value_dist _chem_mod_bond.new_value_dist _chem_mod_bond.new_value_dist _chem_mod_bond.new_value_dist _ASP_prot add HDZ ASP_prot change CG ASP_prot change CG</pre>	_esd _nucleus _nucleus_esd 2 OD2 OD2 OD1	single 0. single 1. double 1.	.876 0.0200 308 0.0191 217 0.0198	0.966 0.0059 1.308 0.0191 1.217 0.0198
loop_ _chem_mod_angle.mod_id _chem_mod_angle.function _chem_mod_angle.atom_id_1 _chem_mod_angle.atom_id_2 _chem_mod_angle.atom_id_3 _chem_mod_angle.new_value_ang _chem_mod_angle.new_value_ang ASP_prot add ASP_prot change ASP_prot change	le le_esd HD2 OD2 CG CB CG OD2 CB CG OD1 OD1 CG OD2	110.209 113.234 123.540 123.226	3.00 2.02 1.50 1.50	
<pre>loop_ chem_mod_tor.mod_id chem_mod_tor.function chem_mod_tor.id chem_mod_tor.atom_id_1 chem_mod_tor.atom_id_2 chem_mod_tor.atom_id_3 chem_mod_tor.new_value_angle chem_mod_tor.new_value_angle chem_mod_tor.new_period ASP_prot add sp2_sp2 CH</pre>	_esd 3 CG OD2 HD2	2 180 5	2	

Neutron refinement with REFMAC5/refmacat

Deuterium fraction parameterisation

 $f_i(s) = (1 - m_i) b_H + m_i b_D$

fi(s) is the total contribution of protium ¹H and ²H isotopes to the scattering factor of the *i*th H atom *s* is the Fourier space vector

 m_i is the deuterium fraction parameter that is an adjustable parameter

 b_H and b_D are the neutron scattering lengths of ¹H (-0.374×10⁻¹² cm) and ²H (0.667×10⁻¹² cm) isotopes, respectively

In the model, use **_atom_site.ccp4_deuterium_fraction** instead of having ¹H and ²H atoms separately

Catapano, L., et al., (2023). Acta Crystallographica Section D 79, 1056-1070.

Deuterium fraction parameter

1

FOM 3 FOM 3 FOM 3 FOM 3 FOM 3	152 N 153 C 154 C 155 0	N CA C	•	SER SER SER SER	A A A A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.597 13.849 15.037 14.886	-4.159 -4.499 -4.410 -4.586	14.144 14.798 13.835 12.629	1.00 1.00 1.00 1.00	6.79 7.22 6.56 6.13	24 24 24 24	SER SER SER	A N A CA A C A O	1 1 1
TOM 3 TOM 3 TOM 3 TOM 3	56 C 57 0 58 H 59 D	OG H D	AB	SER SER SER	A A A A	1 24 1 24 1 24 1 24	13.775 13.373 12.000 12.000	-5.904 -6.885 -4.855 -4.855	15.419 14.483 13.866 13.866	1.00 1.00 0.14 0.86	<pre>7.52 9.28 6.79 6.79</pre>	24 24 24 24 24	SER SER SER	A CB A OG A H A D	1 1 1 1
TOM 3 TOM 3 TOM 3	60 H 61 H 62 H	HA HB2 HB3	•	SER SER SER	A A A	1 24 1 24 1 24 1 24	14.000 14.756 13.082	-3.798 -6.188 -5.908	15.603 15.792 16.242	1.00 1.00 1.00	6.88 6.52 9.87	24 24 24	SER SER SER	A HA A HB2 A HB3	1 1 1
1															
TOM 3:	31 N	N		SER	Ap	1 2	4 12.59	-4.173	14.126	_a	1 tom	site	.ccp	04_de	eute
TOM 3: TOM 3: TOM 3: TOM 3: TOM 3: TOM 3:	31 N 32 C 33 C 34 O 35 C	N CA C O CB		SER SER SER SER SER	Ар Ар Ар Ар	1 2 1 2 1 2 1 2 1 2 1 2	4 12.59 4 13.84 4 15.01 4 14.86 4 13.80	-4.173 2 -4.479 9 -4.371 5 -4.592 5 -5.842	14.126 14.801 13.833 12.642 15.429		939 2 287 2 903 2 724 2	Site 24 A 24 A 24 A 24 A 24 A	10 10 10 10	04_de	eute
ATOM 3: ATOM 3: ATOM 3: ATOM 3: ATOM 3: ATOM 3: ATOM 3: ATOM 3: ATOM 3:	31 N 32 C 33 C 34 0 35 C 36 0 37 H 38 H	N CA C O CB OG H HA		SER SER SER SER SER SER SER	Ар Ар Ар Ар Ар Ар	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	4 12.59 4 13.84 4 15.01 4 14.86 4 13.80 4 13.39 4 11.99 4 13.98	-4.173 2 -4.479 9 -4.371 5 -4.592 5 -5.842 4 -6.837 6 -4.949 -3.744	14.126 14.801 13.833 12.642 15.429 14.505 13.78 4 15.591		939 2 287 2 903 2 724 2 732 2 213 2 .035 2	Site 24 A 24 A 24 A 24 A 24 A 24 A 24 A 24 A	10 10 10 10 10 10 10 10 10	04_d€ .91850	eute

Catapano, L., et al., (2023). Acta Crystallographica Section D 79, 1056-1070.

Deuterium fraction parameter

(a) T	raditi	ona	l rep	rese	ntati	on	n for p	artial	Iy ¹H/²	H-exc	hang	jed s	tructures	
	Ato	m ID	Alt	ID	Comp	In	fo	Coo	rdinates	6	0ccup	ancy	ADP	
ATOM ATOM	609 H 610 D	H D D	A B		ILE A	1 1 1	40 1 40 1	0.029	9.509 9.509	8.192	0.0 0.9)7)3	6.07 6.07	
ATOM	612 F	HB	:		ILE A	1	40 1	1.104	11.549	9.903 7.217	1.0	0	10.27	
<i>(b)</i> D)euter	ium	frac	tion	repr	es	entati	on fo	or parti	ally ¹	H/2H-	exch	anged st	ructures
	Atom :	ID A	lt ID	Com	p Inf	0		Coordi	nates	0ccuj	pancy	ADP	Deuterium	fraction
ATOM ATOM ATOM	575 H 576 H 577 H	H . HA . HB .		ILE ILE ILE	A 1 4 A 1 4 A 1 4	0 0 0	10.038 9.741 11.11	3 9.48 11.8 11.5	9 8.11 05 9.91 6 7.22	0 1.0 1 1.0 7 1.0	00 00 00	7.32 7.80 10.09:	0.92 0.00 1 0.00	
	'no diti	.	l	1000	ntati	~ ~	form	ordou	itoroto	d otru				
(C)	raditi	ona	rep	rese	ntati	on	i ior p	eraei	lierale	a stri	uctur	es		
		Atom	ID A	Lt ID	Col	mp	INTO	C	oordina	tes	Occupa	ancy	ADP	
ATO ATO ATO ATO	M 108 M 109 M 110	3 D 9 D 9 D	D DA DB		ILE ILE ILE	A A A	171 171 17	0.930 0.298 9.246	10.830 13.232 11.966	-0.577 -1.478 0.834	7 1.00 3 1.00 4 1.00) 11) 12) 12	L.12 2.41 2.79	
(d) D)euter	ium	frac	tion	repr	es	entati	on fo	or perd	euter	ated	struc	ctures	
	At	tom I	D Alt	ID C	omp I	nfo) Ca	ordin	ates	0ccu	ıpancy	ADP	Deuterium	fraction
ATO	M 106	5 H	H	. II		17	10.93	84 10.	707 -0.4	461 1	L.00	14.62	21 0.90	
ATO	4 108 4 108	н 3 Н	HB	. I		17	9.259) 11.	883 0.8	325 1	L.00	15.76		

Neutron refinement with REFMAC5/refmacat

X-ray reference structure restraints

- **neutron** models are often **poor** in geometric quality
- the geometry of all **non-H atoms** is more accurately determined by **X-ray**.
- X-ray models are almost always available before a corresponding neutron structure.
- Interatomic distances between non-H atoms are restrained to the reference X-ray structure

ρ

$$(x,\sigma,\alpha) = \begin{cases} \frac{1}{2} \left(\frac{x}{\sigma}\right)^{\alpha}, & \text{if } \alpha = 2\\ \log(\frac{1}{2} \left(\frac{x}{\sigma}\right)^{2} + 1), & \text{if } \alpha = 0\\ 1 - e^{-\frac{1}{2} \left(\frac{x}{\sigma}\right)^{2}} & \text{if } \alpha = -\infty\\ \frac{|\alpha - 2|}{\alpha} \left(\left(\frac{\left(\frac{x}{\sigma}\right)^{2}}{|\alpha - 2|} + 1\right)^{\frac{\alpha}{2}} - 1\right) & \text{otherwise} \end{cases}$$

x = **d**_{model} – **d**_{ref}, is the difference between model and reference structure interatomic distances

small or negative values of α increase robustness

Re-refinement of neutron PDB entries

Source PDB: (https://www.rcsb.org/) Date: 13th July 2024

~70% of all neutron PDB entries are **enzymes**

Source PDB: (https://www.rcsb.org/) Date: 13th July 2024

~70% of all neutron PDB entries are **enzymes**

Hydrolases (EC 3): e.g., trypsin, HIV-1 protease, β-lactamase **Oxidoreductases (EC 1):** e.g., heme peroxidases

Lyases (EC 4): e.g., carbonic anhydrase II

Isomerases (EC 5): e.g., xylose isomerases

Transferases (EC 2): e.g., aminoglycoside acetyltransferase

Source PDB: (https://www.rcsb.org/) Date: 13th July 2024

Transport proteins: e.g., myoglobin, hemoglobin
Sugar binding proteins: e.g., concanavalin A
DNA/RNA: e.g., B and Z-forms of DNA, Sarcin-Ricin loop RNA
Others: e.g., signaling proteins, fluorescent proteins, etc.

Source PDB: (https://www.rcsb.org/) Date: 13th July 2024

Re-refinement of neutron PDB entries – deuterium fraction

97 neutron models (out of 213 at the time of testing)

55 neutron-only, 42 joint X-ray/neutron

Strategy:

- Refinement against neutron data only
- Refinement of *deuterium fraction parameter* for only polar H atoms in case of ¹H/²H-exchanged samples or all H atoms in case of perdeuterated samples

Re-refinement of selected neutron-only models from the PDB

	PDB inform	nation		REFMAC5 ret	finement statistics	
PDB code	Published resolution (Å)	Published R (work/free) (%)	Initial R (work/free) (%)	Final R (work/free) (%)	Data completeness (%)	No. of reflections
1C57	15.79-2.40	27.0/30.1	29.7/33.0	19.9/25.4	87.38	8129
1CQ2	6.00-2.00	16.0/25.0	18.6/25.7	14.9/24.7	91.07	7528
1WQ2	20.00-2.40	22.9/28.9	28.6/32.1	21.5/28.7	92.29	6232
1XQN	32.82-2.50	26.6/32.0	30.0/31.5	23.0/29.4	74.99	6088
2EFA	80.00-2.70	21.6/29.1	24.3/27.6	22.3/28.0	95.66	2154
2GVE	10.00-2.20	26.8/31.9	26.3/30.3	23.4/29.8	93.73	22133
3RZ6	21.77-1.75	20.8/23.8	25.2/25.6	21.3/25.1	79.55	4215
4AR3	15.71-1.05	19.9/23.7	19.7/23.0	18.8/22.4	88.73	21580
4AR4	27.46-1.38	18.6/22.6	17.9/22.1	15.5/21.0	91.56	9958
4C3Q	10.00-2.20	19.2/24.0	21.3/25.1	17.3/24.2	88.19	13256
4FC1	10.00-1.10	21.1/25.3	22.8/25.5	21.5/24.1	76.85	10549
4Q49	20.00-1.80	18.7/21.5	18.6/20.9	15.5/20.4	89.45	18803
5A90	38.91-1.70	19.2/22.7	21.1/24.1	18.9/23.2	88.61	28772
5GX9	33.45-1.49	15.8/20.0	17.3/21.0	17.0/20.9	93.50	14375
7KKW	14.65-2.30	24.9/30.2	27.9/31.8	22.5/31.6	98.38	20628

Catapano, L., et al., (2023). Acta Crystallographica Section D 79, 1056-1070.

Re-refinement of neutron PDB entries – deuterium fraction

97 neutron models (out of 213 at the time of testing)

55 neutron-only, 42 joint X-ray/neutron

Strategy:

- Refinement against neutron data only
- Refinement of *deuterium fraction parameter* for only polar H atoms in case of ¹H/²H-exchanged samples or all H atoms in case of perdeuterated samples

	PDB informat	ion		REFMAC5 ref	inement statistics	
PDB	Published	Published R	Initial R	Final R	Data	No. of
code	resolution (Å)	(work/free)	(work/free)	(work/free)	completeness	reflections
		(%)	(%)	(%)	(%)	
3R98	53.54-2.40	20.7/25.1	20.8/26.1	18.4/25.7	74.99	11610
3R99	53.54-2.40	20.7/25.0	20.8/26.1	18.5/25.6	74.99	11610
3VXF	44.87-2.75	18.3/23.4	17.7/23.6	17.0/24.3	73.72	7670
3X2O	18.83-1.50	22.8/25.1	23.6/25.6	21.1/24.0	93.49	23109
4CVI	39.84-2.41	17.6/24.3	17.6/23.8	14.8/22.9	73.74	11426
4NY6	26.77-1.85	17.6/22.4	19.6/22.3	15.2/21.1	89.97	4654
4QDW	20.00-1.80	16.6/17.9	19.2/18.2	16.2/17.5	72.86	31459
4XPV	20.00-2.00	26.4/30.4	27.3/30.0	24.8/29.9	80.58	11251
5CG5	53.57-2.40	18.6/22.9	19.3/22.9	17.5/22.8	98.45	17458
5MOO	22.09-1.43	17.0/18.5	19.9/20.9	18.0/20.3	93.83	36397
5MOQ	25.43-1.50	15.0/16.7	17.1/18.5	15.3/18.5	89.39	30123
5MOR	19.67-1.49	19.6/20.7	22.8/23.8	18.9/22.0	93.38	32293
5MOS	22.15-1.50	16.6/18.0	18.7/19.5	16.9/19.8	88.77	30027
6EXY	28.20-1.70	15.0/18.7	18.6/19.5	15.8/19.5	95.37	14401
6U0F	13.79-2.00	21.9/24.1	25.2/26.5	20.6/25.9	86.6	12087

Catapano, L., et al., (2023). Acta Crystallographica Section D 79, 1056-1070.

Re-refinement of selected joint X-ray/neutron models from the PDB

Re-refinement of neutron PDB entries

Reference structure restraints

Strategy:

- for the 'neutron-only' entries the corresponding X-ray reference structures were chosen based on their high structural similarity to the neutron refined structures using 'Find Similar Assemblies' option from the PDB.
- For the *joint X-ray/neutron structures* these models were subjected to refinement against their corresponding X-ray data using REFMAC5 (10 refinement cycles). The output model obtained from this refinement process was subsequently employed as a reference model for the generation of external restraints using **ProSMART.**
- Refinement of *deuterium fraction parameter*

improve both the Rwork and Rfree values for low resolution neutron structures by ~2–3 percentage points in certain cases

PC)B	Published		Publ	ished	REFMAC5
co	de	reso	lution	R va	alues	R values
		(low	-high) مُر	(wor	k/free)	(work/free)
Neutron	X-ray	Neutron	A) X-ray	Neutron	70) X-ray	(%) Neutron refinement
iteution	Xiuy	readon	X Iuy	reation	X luy	with
						external restraints
1C57	1DQ6	15.79-2.40	8.00-1.90	27.0/30.1	18.6/NA	20.2/24.9
2EFA	1B2A	80.00-2.50	55.00-1.70	21.6/29.1	18.8/23.0	21.9/25.3
2YZ4	1DQ6	33.64-2.20	8.00-1.90	27.9/31.2	18.6/NA	21.7/27.3
2ZPP	1B2G	20.00-2.50	10.00-1.80	22.1/26.0	20.0/22.6	20.8/25.4
3R98	3R98	53.54-2.40	43.89-2.10	20.7/25.1	16.6/20.3	17.8/25.2
3R99	3R99	53.54-2.40	43.89-2.10	20.7/25.0	16.6/20.3	17.9/25.3
3VXF	3VXF	44.87-2.75	29.22-1.60	18.3/23.4	16.1/18.4	16.8/23.5
3X2O	3X2O	18.83-1.50	28.23-1.00	22.8/25.1	13.5/15.3	21.2/23.9
3X2P	3X2P	19.68-1.52	37.75-0.99	21.8/26.0	13.4/14.2	22.0/25.7
4CVI	4CVI	39.84-2.41	14.80-2.10	17.6/24.3	13.4/17.6	14.0/22.8
4DVO	4DVO	20.00-2.00	29.90-1.55	19.0/21.4	NA/NA	18.4/22.2
4GPG	4GPG	37.61-1.98	50.00-1.89	19.5/25.9	14.6/20.3	20.9/25.7
4PVN	4PVN	52.28-2.30	43.13-1.95	20.9/26.2	15.6/18.5	18.7/26.8
5CG6	5CG6	22.12-2.40	44.31-1.70	26.0/28.7	19.6/21.1	24.0/27.8
5XPE	5XPE	17.02-2.09	46.50-1.64	22.5/27.8	15.5/18.5	20.5/29.7
5ZN0	5ZN0	33.76-1.90	36.01-1.10	18.8/24.7	18.6/21.2	16.7/25.5
6BQ8	6BQ8	40.00-2.20	10.00-2.00	23.2/28.8	19.9/24.5	19.7/29.2
6EXY	6EXY	28.20-1.70	31.93-1.10	15.0/18.7	12.3/13.7	16.0/19.8
6U0E	6U0E	14.51-1.89	29.01-2.10	21.7/25.4	18.4/23.5	21.4/26.7
7D6G	7D6G	26.33-2.10	40.00-1.65	17.7/21.9	15.7/18.6	14.6/22.1
7TX4	7TX4	12.75-2.35	61.05-1.90	17.7/25.9	16.6/22.4	15.2/26.0

Catapano, L., et al., (2023). Acta Crystallographica Section D 79, 1056-1070.

Neutron studies of iron binding protein FutA

Rachel Bolton & Ivo Tews

Cyanobacterial iron binding protein

X-ray induce **photoreduction** of **ferric (Fe³⁺)** FutA

		d shell	secon		nere	nation spł	coordi	
	Fe	Arg203	Arg103	W1	Tyr200	Tyr199	Tyr143	Tyr13
Ferrous	+2	+1	+1	0	-1	-1	-1	-1

Bolton, R., et al., (2024). Proc. Natl. Acad. Sci. U. S. A. 121, e2308478121.

Neutron structure reveals the protonation states of iron coordinating residues

	coordi	nation sph	ere	-	secon	d shell		
Tyr13	Tyr143	Tyr199	Tyr200	W1	Arg103	Arg203	Fe	
-1	-1	-1	-1	0	+1	too far	+3	Ferric

Availability

CCP4i2

Input Data Parameterisation Restraints Output Advanced Diffraction experiment type: Neutron Neutron refinement options Use hydrogen during refinement generate hydrogens Use hydrogen positions for All hydrogens Use hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments Les custom resolution limits Reset all B-factors at start Celean up intermediate files at end of job # Replace this with optional additional keyword input	Input Results Comments Input Data Parameterisation Restraints Output Advanced ype: Neutron tions ing refinement generate hydrogens sitions for All hydrogens on angle restraints (for generation and/or refinement) uterium fractions for All hydrogens - for perdeuterated crystals on To D for exchangable atoms; H for others - for H/D exchange experiments on limits t start te files at end of job ional additional keyword input is not used is not used	167: Refinement - REFMAC5		Th	e job is Pendin	g	
Input Data Parameterisation Restraints Output Advanced Offraction experiment type: Neutron Sector refinement options Use hydrogens during refinement generate hydrogens Refine hydrogen positions for All hydrogens Refine hydrogen torsion angle restraints (for generation and/or refinement) Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments Celean up intermediate files at end of job Replace this with optional additional keyword input Replace this with optional additional keyword input	Input Data Parameterisation Restraints Output Advanced ype: Neutron ③ tions Ingrefinement generate hydrogens ④ esitions for All hydrogens ④ on angle restraints (for generation and/or refinement) uterium fractions for All hydrogens - for perdeuterated crystals ④ on so To D for exchangable atoms; H for others - for H/D exchange experiments ④ on limits t start te files at end of job ional additional keyword input eils not used ②		Input	Results	Comments		
Diffraction experiment type: Neutron ? Neutron refinement options ? Use hydrogens during refinement generate hydrogens ? ? We hydrogen positions for All hydrogens ? ? We hydrogen torsion angle restraints (for generation and/or refinement) ? Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals ? Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments ? Use custom resolution limits Reset all B-factors at start ? Clean up intermediate files at end of job # Replace this with optional additional keyword input * Extra keywords fileis not used	<pre>ype: Neutron ? tions ing refinement generate hydrogens ? solutions for All hydrogens ? on angle restraints (for generation and/or refinement) nuterium fractions for All hydrogens - for perdeuterated crystals ? ions To D for exchangable atoms; H for others - for H/D exchange experiments ? on limits t start te files at end of job ional additional keyword input </pre>	Input	Data Parameteris	ation Rest	raints Output	Advanced	
 V Use hydrogens during refinement generate hydrogens Refine hydrogen positions for All hydrogens V Use hydrogen torsion angle restraints (for generation and/or refinement) Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Extra keywords fileis not used 	ing refinement generate hydrogens ing refinement generate hydrogens issitions for All hydrogens on angle restraints (for generation and/or refinement) inuterium fractions for All hydrogens - for perdeuterated crystals ions To D for exchangable atoms; H for others - for H/D exchange experiments ions Initis it start te files at end of job ional additional keyword input	Diffraction experiment type: Neutron 😒					
 Ose hydrogens during reinteriter indulgens c Refine hydrogen positions for All hydrogens c Use hydrogen torsion angle restraints (for generation and/or refinement) Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals c Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments c Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Extra keywords fileis not used 	eis not used	Use bydrogens during refinement	budrogons				
 Refine hydrogen positions for All hydrogens () Use hydrogen torsion angle restraints (for generation and/or refinement) Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals () Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments () Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Kex ta keywords fileis not used 	sitions for All hydrogens C on angle restraints (for generation and/or refinement) euterium fractions for All hydrogens - for perdeuterated crystals C ions To D for exchangable atoms; H for others - for H/D exchange experiments C on limits It start te files at end of job ional additional keyword input	Sentral generate					
 Use hydrogen torsion angle restraints (for generation and/or refinement) Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Extra keywords fileis not used 	on angle restraints (for generation and/or refinement) exterium fractions for All hydrogens - for perdeuterated crystals 😨 ions To D for exchangable atoms; H for others - for H/D exchange experiments 😨 on limits t start te files at end of job ional additional keyword input ais not used	Refine hydrogen positions for All hydroge	ens 📀				
 Refine hydrogen/deuterium fractions for All hydrogens - for perdeuterated crystals Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Image: All hydrogen/deuterium fractions in the set of the set	suterium fractions for All hydrogens - for perdeuterated crystals ions To D for exchangable atoms; H for others - for H/D exchange experiments on limits tt start te files at end of job ional additional keyword input a is not used a is not used	Use hydrogen torsion angle restraints (for ger	neration and/or refi	inement)		-	
Initialise H/D fractions To D for exchangable atoms; H for others - for H/D exchange experiments © Use custom resolution limits Reset all B-factors at start C Clean up intermediate files at end of job # Replace this with optional additional keyword input # Replace this with optional additional keyword input Extra keywords fileis not used	ions To D for exchangable atoms; H for others - for H/D exchange experiments So on limits it start te files at end of job ional additional keyword input	Refine hydrogen/deuterium fractions for	All hydrogens - for	perdeuter	ated crystals		
Use custom resolution limits Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input # Replace this with optional additional keyword input	on limits It start te files at end of job ional additional keyword input ais not used	Initialise H/D fractions To D for exchanged	ole atoms; H for oth	ners - for ⊢	/D exchange ex	periments 📀	
Reset all B-factors at start Clean up intermediate files at end of job # Replace this with optional additional keyword input Image: Clean up intermediate files at end of job # Replace this with optional additional keyword input Image: Clean up intermediate files at end of job # Replace this with optional additional keyword input Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files at end of job Image: Clean up intermediate files	tt start te files at end of job ional additional keyword input ais not used	Use custom resolution limits					
Clean up intermediate files at end of job # Replace this with optional additional keyword input K Extra keywords fileis not used	eis not used	Reset all B-factors at start					
# Replace this with optional additional keyword input	ional additional keyword input	Clean up intermediate files at end of job					
# Replace this with optional additional keyword input Extra keywords file is not used	eis not used						
kw Extra keywords fileis not used	eis not used	# Replace this with optional additional keyword in	nput				
kw Extra keywords fileis not used	eis not used						
kw Extra keywords fileis not used 💿 🕞 🛙	eis not used						
kw Extra keywords fileis not used	eis not used 😧 🕞 🔝						
kw Extra keywords fileis not used	eis not used						
kw Extra keywords fileis not used 🕴 🕞 🛙	eis not used						
		kw Extra keywords fileis not used				0	

CCP4 Cloud

014] refmacat (new)			- @ •
Input Output		🕨 Run	😰 😱 🚺 🗙 Close
Refinement	t with Refmac	5 via Refmacat	
job description:	efmacat		
output id:	efmacat		
Re	fine using:	Mean Amplitudes only *	
omologous model	do not use] *		
 Basic options 			
Model Parameterisation			
▶ Restraints			
→ Output			
- Advanced			
Diffraction experiment type	Neutron * Us	e hydrogen atoms during refinement	Yes *
	Re	fine hydrogen positions	Yes - all hydrogens *
	Us	e hydrogen torsion angle restraints	Yes *
	Re	fine H/D fractions	Yes - only polar hydrogens (for H/D exchange experiments) *
	Ini	tialise H/D fractions	Set to D for exchangable atoms; H for others (for H/D exchange experiments) *
Type additional keywords here			
1			

Documentation in progress...

Future work

- Development of algorithms for the precise arrangement of **water molecules**. Specifically, they will focus on refining the orientation of hydrogen positions within these molecules, utilising information derived from density maps.
- In addition to considerations driven solely by map-based criteria, these algorithms must incorporate information on *hydrogen bonding interactions*. This inclusion is essential for obtaining a more comprehensive understanding of the molecular landscape.
- Further experiments with UOX in complex with the natural substrate UA are important. These, however, will
 require the use of cryo-trapping as the 5-PIU intermediate is short lived and thus unstable during the long
 neutron diffraction experiments

Acknowledgement

MRC-LMB Computational Structural Biology Group

Paul Emsley

Fei Long

Reitaro Yamashita Rob Nicholls Rangana Warshamanage

MRC-LMB Computing

Jake Grímmett Toby Darlíng Ivan Clayson Garíb N. Murshudov

Alexander Shtyrov

<u>lucrezia@mrc-lmb.cam.ac.uk</u> Twitter: lulu_catapano

King's College London

Roberto A. Steiner

Global Phasing Marcín Wojdyr

Soí Buí Líndsay McGregor

University of Southampton Rachel Bolton

IVO TEWS

MRC Laboratory of Molecular Biology