7–8 Sept 2015
Institute for Macromolecular Chemistry, Prague
Europe/Prague timezone

Structural and functional characterization of three closely related intrinsically disordered LEA proteins from Arabidopsis thaliana

8 Sept 2015, 12:25
20m
Institute for Macromolecular Chemistry, Prague

Institute for Macromolecular Chemistry, Prague

Heyrovského nám.2 162 06 Praha 6 - Břevnov Czech Republic

Speaker

Mrs Anne Bremer (Max Planck Institute for Molecular Plant Physiology)

Description

The significance of intrinsically disordered proteins (IDPs) has been underestimated for a long time in spite of their high abundance in nature. In fact, it has been predicted that more than 30% of all eukaryotic proteins are IDPs. IDPs have no stable secondary structure in dilute solutions, but instead exist as dynamic ensembles of conformations. We are focusing on the structural and functional characterization of three closely related IDPs from the model plant *Arabidopsis thaliana*. The three IDPs belong to the group of Late Embryogenesis Abundant (LEA) proteins. We expressed the three proteins recombinantly in *E. coli* and found that they are disordered in solution, but mostly α-helical in the dry state, as shown by CD spectroscopy. We showed a linear increase of the α-helical content upon dehydration using a glycerol gradient. Interestingly, the gain of α-helix content was further increased in the presence of artificial membranes. The three LEA proteins protected liposomes from leakage of an encapsulated fluorescent dye during freezing and thawing. Furthermore, X-ray scattering results indicated direct protein-membrane interactions. The interchain distances between the lipids were increased in the presence of the LEA proteins upon dehydration, indicating penetration of the proteins into the membranes. FTIR spectra showed interactions of the proteins with the lipid head groups in the dry state, suggesting a positioning of the proteins in this region parallel to the membrane surface. Recently, we have used neutron membrane diffraction measurements to elucidate the position of the LEA proteins relative to the membranes at different dehydration levels. Detailed data analysis is currently on-going.

Primary author

Mrs Anne Bremer (Max Planck Institute for Molecular Plant Physiology)

Co-authors

Dr Anja Thalhammer (University Potsdam) Dr Benjamin Kent (Helmholtz-Zentrum Berlin) Dr Dirk Hincha (Max Planck Institute for Molecular Plant Physiology) Prof. Gary Bryant (RMIT University)

Presentation materials

There are no materials yet.