
MXCuBE 3 web application, on the way to next

generation experiment control

M. Eguiraun1, A. Milan-Otero 1, F. Bolmsten1, J. Nan1 , M.
Thunnissen1 , V. Hardion1, D. Spruce1 , M. Guijarro2 , M. Oscarsson2

, A. Beteva2 , D. de Sanctis2, G. Leonard2, J. Meyer2, A. Gotz2

1 MAX IV Laboratory, Fotongatan 2, 225 94 Lund, Sweden.
2 ESRF The European Synchrotron, 71 Av des Martyrs, 38000 Grenoble, France.

E-mail: mikel.eguiraun@maxiv.lu.se

Abstract.
Macromolecular Xtallography Customized Beamline Environment (MXCuBE) is a software

platform that provides users of beamlines at synchrotrons an easy to use graphical environment.
From one side it hides the complexity of the beamline hardware, facilitating normal operation,
while on the other side provides routines for automated complex data collection strategies. The
third evolution of this software is under development as part of the MXCuBE collaboration.
A prerelease version has already been used in experiments at MAXIV and ESRF, the facilities
leading the development. The main evolution compared to the previous versions is the transition
to a web based environment, which is expected to facilitate remote data collection and on-line
data analysis, among other things. This article explains the main features and technical details
of MXCuBE v3.

1. Introduction
The MXCuBE project started in 2005 at ESRF [1, 2], with the objective of providing a unified
and user-friendly software to the macromolecular crystallography (MX) beamlines. The software
was designed to pace the increase in performance and automation at the MX ESRF beamlines.
From the initial task of collecting single crystal diffraction data, MXCuBE evolved to include
more advanced functionalities, enabling the assessment of diffraction characteristics of samples,
complex and automatic data collection, and recording X- ray emission spectra and subsequent
analysis. Furthermore it offered the possibility to control the beamline remotely; directly from
the home laboratory (Remote Access).

In 2010, a collaboration for the development of MXCuBE started among the major
synchrotron facilities in Europe with the aim of further developing MXCuBE. Today it is actively
supported by the following partners: ESRF, Soleil, MAX IV, HZB, EMBL, Global Phasing Ltd,
DESY and ALBA. And several new partners are considering to join the collaboration.

The current stable version of MXCuBE (release v 2.2) is developed in Python using the
PyQt toolkit and nowadays represents the state-of-the art in terms of GUI for MX diffraction
experiments. It enables the implementation of new data collection methods [3, 4] and hands-off
automatic data collection. However, the continuous evolution of structural biology beamlines
and data collection protocols necessitated the development of novel control software, that not

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 59

DOI: 10.17199/NOBUGS2016.104

only could keep up both with scientific drivers and user needs, but that could evolve with new
technology. From this basis the project of MXCuBE v3 started.

One of the main reasons to implement MXCuBE 3 as a web application is to take advantage
of the recent advances in user interface design coming from web technologies. As any web
application, MXCuBE 3 runs in a web browser making maintenance and deployment of the client
easy and facilitates user access. The distributed nature of web applications along with simple
client installation makes MXCuBE 3 ideal for remote access usage. MXCuBE already supports
the web-based LIMS (Laboratory Information Management System) for protein crystallography,
ISPyB [5]. A seamless integration can further be achieved thanks to the use of a common
platform, resulting possibly in a better performance and smoother operation. Taking advantage
of this new technology the user interface has been completely redesigned, with the aim of
enhancing the user experience by means of a feedback gathering from users, an improved
experiment queue operation and sample management, and a better integration with LIMS
system.

The main technologies in use are python-flask web framework [6] for tL he backend, and
React JavaScript library [7] for the front-end, enhanced with several third party libraries for
both components. Low-level control is achieved via Tango, Sardana and custom protocols, by
means of the so-called Hardware objects, which are self-contained pieces of software which links
to the underlying instrumentation control. These libraries are being reused from the previous
versions of MXCuBE, hence compatibility between different versions is guaranteed.

MXCuBE v3 development is currently lead by MAXIV and ESRF. The first milestones defined
in 2015 have already been achieved, when the first data collection experiment was successfully
performed in June 2016 during MAX IV new MX beamline Biomax [8] commissioning. The next
months will be dedicated to increase the stability of the application and to add new features that
will be needed when the user operation starts. MXCuBE v3 will not only be the experiment
control environment at Biomax beamline in MAXIV and the ESRF MX beamlines in the near
future, but the experience acquired will serve for future software developments.

The structure of this paper is as follows: first the MXCuBE v3 development plan and the
main goals of the project are described, the next section deals with the technologies adopted,
and finally some conclusions will be listed.

2. MXCuBE v3 Development
A preliminary feasibility study was requested by the MXCuBE collaboration board, and the
conclusions and experience gained from that study defined the technology stack to be used for
the development. The real kick-off of the project happened in September 2015, at that time,
MAXIV and ESRF defined together the development plan, specifying the main features and
milestones, in addition, each milestone was subdivided in a set of work packages.

MAX IV decided to directly use MXCuBE v3 for the BioMax beamline from the very
beginning of the beamline operation. Although this might look like a risky approach, the fact
that the schedule of the installation of the beamline components was distributed over several
months, and the commitment of both institutes allowed a successful development. Moreover,
the old MaxLab as well as the ESRF beamlines have been used extensively for testing the
developments (avoiding disruption of user operation).

In June 2016, shortly before the inauguration of the MAX IV facility, the first diffraction
data was collected at the BioMax beamline. For such first experiment, the most important
feature to implement was the so called ’Standard Data Collection’, which is the most basic data
acquisition. It implies configuring the beamline in order to get a suitable photon beam, as well
as configuring the data collection by centering the crystal in the beam path and the oscillation
to be performed by the diffractometer. For a more comprehensive list and description of the
main features and milestones see the github page of the project [9].

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 60

Frequent meetings are held for planning and estimating the work, following a kind of
distributed scrum (Agile methodology), where the review, planning and estimation of work
is done every month. Technical discussions and face to face meetings for specific topics are also
organised when needed. The project relies, apart from physical meetings, on Github and Skype
for communication between the teams.

3. From Qt to Web
Although making MXCuBE available for the web is a major development effort, the whole
existing Hardware Object layer is kept unchanged and is common among the different versions.
In this way the application reuses the existing libraries for beamline control. The focus is on
bringing the user interface to the web making the transition from MxCuBE v2 to MxCuBE v3
straightforward.

This section explains the main characteristics of the Hardware Objects library, as well as the
main technologies in use in MXCuBE v3.

3.1. Hardware Objects
The MXCuBE Hardware Repository holds the description of the devices and equipments of
the beamline as a set of XML files. Each file represents at least one Hardware Object,
which is a self-contained piece of software that links the graphical layer to the underlying
instrumentation control software. The most common communication protocols for accelerator
control are available, e.g. Tango, EPICS, Tine, Sardana, Spec or EMBL Exporter. Hardware
Objects can be composed in order to represent more complex equipment, like a diffractometer.
And and they can also call methods from another Hardware Object, for example an object that
handles the configuration of the beamline could retrieve motor positions from another Hardware
Object. The asynchronous communication has been implemented using the concept of signals
and slots.

3.2. User Interface
Since this new development moves from using Qt libraries into a web environment one of the first
decisions (and discussions) was the user interface. The previous interfaces fulfil very well their
mission, however a questionnaire was sent to nearly two hundred beamline users in order to detect
any potential usability problems as well as to listen to suggestions. The overall feedback was
positive, however there were clear needs to make improvements, such as the usability considering
different user profiles, but also the advanced configuration and management of the experiment.

There are two main modes of operation with MXCuBE: automatic and manual mode. The
first one consists of selecting a set of samples and selecting the appropriate workflow that will
be applied to all of the samples, i.e. an automated, complex and sequential predefined data
collection. For this purpose, the interface should present an easy way of inspecting all available
samples, and associate a workflow only to the ones the user is interested in.

On the other hand, in a manual operation the scientist usually have a close view of the
sample, he/she manipulates the diffractometer, centres the sample and manually selects the most
appropriate parameters for the data collection. Several collection types are also available, and
characterisation routines could give the user an initial proposal for the diffraction experiment.
In any case, one could pre-configure all the experiment and then manually proceed with each
sample.

Hence, since there are two main operation modes, the interface layout is split into different
views, decoupling the sample lists and experiment configuration, see Figure 1, from the sample
view. The new interface is intended to cope with increased sample throughput (several hundreds
of samples each day), representing samples as cards, which is considered more appropriate
compared to a hierarchical information display in a big tree as it was before. A card would allow

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 61

Figure 1. MXCuBE Sample Grid Interface.

to condensate information of sample details and performed analysis in a small space, and offers
more possibilities regarding user interaction.

The Figure 2 shows the sample view together with the experiment tree for the current sample,
basically the one that is mounted and a glance of what is coming. Ideally, the switching back
and forth between the two views should be minimised, additionally, the design should avoid
duplication of information whenever is possible. At the present stage of development the two
abovementioned views have been implemented, which provide the most basic and important
capabilities needed in the beamline operations. Additional views are currently in development.

3.3. Backend
The backend server is based on Python Flask web server [6]. It is a Web Server Gateway
Interface (WSGI) microwebframework, in which the core of the sever is designed to be simple but
extensible, thus the developer needs to implement many services commonly found in heavy web
servers. There are many flask extensions available, for example for dealing with databases, user
authentication, form validation, templates, and so on. The backend also uses the gevent-flask
extension to enable asynchronous network communication, in order to respond to concurrent
requests in a very efficient manner.

Flask has been proven to be simple and effective to use, and integration within any WSGI-
compliant application container can be done with little effort. Although at the moment, in the
development phase, the Flask builtin web server is used.

The backend has been implemented following a Rest-like HTTP API calls. Where calls
requested by the client are made via the standard HTTP methods (GET, POST, PUT,
DELETE), and in the response apart from the result of the operation some data is included..
The different URLs are defined in a way that the functionality is easily understandable. For
bidirectional asynchronous communication, MXCuBE v3 uses socketio, which is a library

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 62

Figure 2. MXCuBE Data Collection Interface.

for communication that adapts automatically to the available protocols to ensure the best
functionality, going from Websockets to AJAX polling. In the current state of the development,
socketio is mainly used for re-emitting the hardware objects internal signals to the client, for
example when a data collection has finished its execution.

3.4. Front end
In order to provide an enhanced user experience the front end has been completely redesigned.
For that goal we rely the development on React Javascript library, which it is a library that
takes advantage of a component-based design.

3.4.1. React React is an open-source Javascript library for building user interfaces using
the concept of components [7]. Components make it possible to create independent entities
encapsulating functionality, much like widgets in a traditional desktop UI framework. React
is mainly concerned with the View part in the classic Model View Controller (MVC) design
pattern and for more complicated applications another library needs to take care of the Model
and Controller in MVC. It has fast become one of the most popular way to achieve a single page
application (SPA).

In React the UI is described as a collection of components, where each component
encapsulates code making it easier to reuse and test than in normal web-development. The main
objective of a component is to provide a view for rendering data as HTML. The development
of React was started by Facebook and is used both in Facebook and Instagram but was open-
sourced in 2013 and is now used by many other websites.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 63

Redux Redux is an open-source Javascript library that handles the state of an application, [10].
It is one of the most common libraries to use with React when developing complex applications
because it takes care of both the Model and Controller (in the MVC pattern) and is therefore a
good fit with React. It does this by keeping the state of the application in one place and only
letting actions mutate it. By using this architecture, it is possible to get logging, hot reloading
and time travel for debugging purposes with minimal effort.

One of the drawbacks of React is the fact that it does not recommend direct component to
component communication, but it does not provide a solution either. Redux solves the problem
by storing all your application state in one place, called a store. React components then dispatch
state changes to the store, not directly to other components. An action can be triggered from the
components themselves or from an outside source such as the server. Once the state is changed,
it is passed down to the components of React and rendered as HTML. This unidirectional data
flow makes the application much more predictable and easier to understand.

4. Conclusions
The existing and successful MXCuBE collaboration has been strengthened with the development
of MXCuBE v3. New tools and procedures have been established by different partners with the
common goal of providing good software for our users. The current stage of MXCuBE has
already prove that it is in good rails with real experiments and helping with BioMax beamline
commissioning. A lot of effort has been devoted to proper planning and technology analysis,
however, there have been changes compared to what it was planned in 2015, but the MXCuBE
team is really committed with the project and quickly adapts to changes. Furthermore, currently
both Qt and Web versions of MXCuBE are in development, and this has lead to a very positive
feedback where new features and ideas have been shared. The next months are devoted to the
addition of the features in order to be ready for welcoming users, as well as to continue improving
the current status of the software.

Acknowledgments
The authors are very grateful to the KITS and MX (MAXIV) and BCU and SB (ESRF) teams
for their outstanding support during the development.

References
[1] Gabadinho J. et al. MxCuBE: a synchrotron beamline control environment customized for macromolecular

crystallography experiments. J Synchrotron Radiation. September 2010, doi: 10.1107/S0909049510020005.
[2] MXCuBE project page, http://mxcube.github.io/mxcube/
[3] Zander et al. MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron

macromolecular crystallography beamlines. Acta Crystallographica Sec. D, Vol. 71, Nov. 2015.
[4] D. de Sanctis et al., Facilitating best practices in collecting anomalous scattering data for de novo structure

solution at the ESRF Structural Biology Beamlines. Acta crystallographica. Section D, Structural biology,
2016; 72 (Pt 3) doi:10.1107/S2059798316001042

[5] S. Delageniere et al., ISPyB: an information management system for synchrotron macromolecular
crystallography. Bioinformatics. 2011 Nov 15; doi: 10.1093/bioinformatics/btr535.

[6] Python Flask web framework, http://flask.pocoo.org/
[7] React: a javascript library for building user interfaces, https://facebook.github.io/react/
[8] Thunnissen M. et al. The macromolecular crystallography beamlines BioMAX and MicroMAX at the MAX

IV laboratory. Acta Crystallographica Section A: Foundations and Advances. 2015.
[9] MXCuBE v3 in github, https://github.com/mxcube/mxcube3
[10] Redux, a predictable state container for JavaScript apps. http://redux.js.org/

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 64

