

Building a Prototype Data Analysis as a Service: the STFC experience

NOBUGS 2016 - Copenhagen

Frazer Barnsley

October 2016

Outline

- Motivations
- Architecture
- Technology overview
- Prototype
- Future developments

Motivations

The facilities

- ISIS, Diamond and CLF
- > 6000 scientists a year
- Users come to perform experiments and leave with their data

Desktop analysis and simulation becoming more

difficult Microfocus MX 124 Circular Dichroism B2 Monochromatic MX 04 MX: Macromolecular Crystallography Long Wavelength MX Target Station 1 Infrared Microspectroscopy B2 06 Nanoscience Non-Crystalline Diffraction 122 07 Surface & Interface Diffraction High throughput SAXS B2 B07 VERSOX: Versatile Soft X-ray Beamline Inelastic X-ray Scattering |21 108 Soft X-ray Microscopy LOLA: X-Ray Spectroscopy 120 109 SISA: Surface & Interface Structural Analysis Small Molecule Single Crystal Diffraction 119 110 BLADE: X-Ray Dichroism & Scattering High Resolution Powder Diffraction X-ray Pair Distribution 115-Extreme Conditions 113 112 JEEP: Joint Engineering, Environmental and Processing Muons A Hard X-ray Nanoprobe for Complex Systems |

113 X-Ray Coherence and Imagina

The target

- Provide users access to data and compute resources during and after experiment
- Provide users with a suitable software environment
- Provide appropriate compute resources with seamless access to data and software
- Provide suitable interfaces
- Expandable for different communities

Architecture

Technology Overview

Access: Remote Desktop

- NoVNC
 - Easy browser access

- SSVNC (secure VNC)
 - Fast access, requires user to install software

- RDP
 - Fast access, built into Windows

Access: Data

- Browser
 - Easy access
- WebDAV
 - Easy mount
- Globus / GridFTP
 - TB transfers

Resources: Cloud

- OpenNebula
 - 896 processing cores
 - 3.5TB memory
- CEPH
 - 750TB storage
 - Self healing capabilities
 - Decentralised design
- Managed by RAL Tier 1

OpenNebula

Resources: SCARF

 General purpose batch system based on IBM Platform LSF

- 5808 cores
- 500 registered users
- >70 applications
- 300TB high speed storage (PaNaSaS)

Software: CernVM-FS

- Union file system
- Multi-tiered caching
- · Clients installed on SCARF and the cloud
- Service managed by RAL Tier 1

Software: Configuration Mgmt

- Quattor
- Reuse of configuration across multiple systems
- Service managed by RAL Tier 1

Intelligence: ICAT

- Metadata catalogue
- Rule based permissions

- Links users to experimental data, instruments, parameters etc ...
- ISIS
 - 48TB data
 - >13 million data files
- Also used by DLS, CLF, ESRF, SNS ...

Prototype

The setup

- Web frontend to launch cloud VMs
- Graphical access to VMs via remote desktop
- VMs configured at contextualisation stage
- Software loaded from CernVM-FS via desktop icons
- Processing can be done locally on VMs or sent to HPC systems
- Persistent user data storage

The software - CCP4

- " integrated suite of programs that allows researchers to determine macromolecular structures by X-ray crystallography, and other biophysical techniques " www.ccp4.ac.uk
- Used on data non-exclusively from the MX beamlines at Diamond
- Project co-ordinated by STFC

DEMO Analysis 🦳 My Data 🔞 Guide 🕞 Logout Create an analysis environment then launch a remote desktop session. CCP4 Analysis Machine ✓ LAUNCH **X** DELETE CCP4 Analysis Machine CCP4 CREATE

User selects their environment

Then select their preferred method for remote access

CVMFS

or launch jobs to HPC systems

Persistent user storage is accessible from each VM ...

and can be mounted on the user's local machine

Future Developments

Data transfer and management

More integration with the ICAT family

More engagement with user communities

frazer.barnsley@stfc.ac.uk

