
The growth of the ICAT family

Stephen M Fisher1, Frazer Barnsley1, Wayne Chung1, Sylvie Da
Graca Ramos2, Alex De Maria3, Rebecca Fair1, Andy Gotz3, Tom
Griffin1, Rolf Krahl4, Brian Matthews1, Peter Parker5, Kevin
Phipps1, Alex Potter-Dixon1, Milan Prica6, Christopher Prosser1,
Jianguo Rao1, Shelly Ren5, Brian Ritchie1 and Jody Salt1

1Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
2Diamond Light Source Ltd, Diamond House Harwell Campus, Didcot, OX11 0DE, UK
3ESRF, 71 Avenue des Martyrs, 38043 Grenoble, France
4Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15,
12489 Berlin, Germany
5Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, United States
6Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, 34149 Basovizza, Trieste,
Italy.

E-mail: dr.s.m.fisher@gmail.com

Abstract. The ICAT project provides a metadata catalogue and related components to
support Large Facility experimental data and aspires to link all aspects of the research chain
from proposal through to publication and can also be used to provide an implementation of a
data policy as has been done at a number of facilities using ICAT. Over the last couple of years,
the existing components of ICAT have seen improvements in functionality and performance.
TopCAT, a GUI to work with multiple ICATs, has changed dramatically preserving only
the original concept and new components have been added to provide flexible data delivery
solutions and to make an ICAT installation easy to manage. These changes have been made
in consultation with the ICAT community to ensure that the components are highly decoupled
and that as far as possible backwards compatibility is maintained as more sites move their ICAT
installations into production.

1. Introduction
ICAT [1] is based on three fundamentals: a data model, a data catalogue and a GUI to provide
a good user experience. The CLRC Data Portal [2] was prototyped and reported on in 2001. A
number of the ideas introduced at that time have been preserved though many of the technologies
used today in the ICAT family did not exist then.

2. Early history
The CLRC Data Portal of 2001 made use of a data model that evolved into something that was
published in 2004 as the CSMD (CCLRC Scientific Metadata Model: Version 2 [3]) and which
has subsequently evolved [4]. The original catalogue was relational and had the idea of wrappers
to extract metadata from the data dynamically but not to store it. This avoids duplication of
data but is potentially very expensive. The metadata catalogue developed further and became
an open-source project in 2008 [5, 6]. It was deployed as a SOAP based web service running

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 17

DOI: 10.17199/NOBUGS2016.45

under Glassfish. The API, having specific operations to manipulate each table, became very
large. The authorization scheme was ACL like and required the storage of a lot of extra data in
the catalogue. A major rewrite was performed four years later in 2012 when the complex API
was replaced by a generic interface with just a few calls related to the usual CRUD operations
that were being performed on the underlying database.

The ICAT Data Service, IDS, was started in 2013 with the aim of being an interface to ICAT
catalogued data files. It was inspired at some level by an earlier component: the Downloader.
The Downloader was written to meet the needs of one facility and was only able to build zip files
of data to download. Its successor, the IDS, has a clean plugin architecture to make it suitable
for any facility and has many extra features as explained below.

Work on TopCAT as a GUI to view multiple ICATs started in 2011. Two years later, in
2013, work began on the ICAT Job Portal, IJP, a system allowing data stored in the IDS and
catalogued in ICAT to be submitted to compute resources.

The ICAT community now has monthly teleconferences, an annual face-to-face meeting and
is governed by a steering group which meets a couple of times a year.

3. Established components
The server components all run in a Java EE container such as Glassfish or WildFly.

3.1. ICAT Server
The ICAT server is a metadata catalogue to support primarily Large Facility experimental data,
linking all aspects of the research chain from proposal through to publication. It provides SOAP
and REST web service interfaces to an underlying database via easy to use APIs. It has powerful
search features, a rule based authorization mechanism and it uses plugins for authentication.

3.1.1. Database and Schema The primary database is relational. The ICAT server should in
principle work on any relational database which supports transactions and has a JDBC driver
available. Best understood are MariaDB/MySQL and Oracle. Some of the information held in
the relational database is also indexed in Apache Lucene [7] which is a fast text search engine.
This gives the benefit of the relational model for keeping the data organised and at the same
time allows users to find things when they are not sure where to look.

The schema is designed to be as regular as possible. All relationships are one to many and
are cascaded in the one to many direction. This means for example that if you delete a Dataset
then all its Datafiles are deleted too. Entities are identified by an object in the many to one
direction and one or more naming fields. For example a Datafile is identified by its Dataset and
a name. This also means that a Datafile cannot exist without a Dataset and that it can only be
‘part of’ one Dataset.

3.1.2. Authentication Plugins An authenticator implements a small interface which allows the
ICAT server to authenticate and to find out information about the authenticator. Each plugin
is deployed as a separate application in the Java EE container and is accessed by the ICAT
server with remote calls. Each authenticator accepts a map of key names to key values where
typical key names would be ‘username’ and ‘password’.

3.1.3. Accessing the service Originally the ICAT Server only exposed a SOAP interface but
now it has a REST interface as well.

The convenience of using the SOAP interface depends critically upon the level of support
provided by the available libraries. Support in both Python and Java is good. The python-icat
library is a Python package that provides a collection of modules for writing programs that

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 18

access an ICAT service using the SOAP interface by extending Suds [8] with ICAT specific
features and also providing a level of protection from server version dependency. In addition
the ICAT Manager is a standalone Java client based on the Eclipse Platform for visualising
and managing ICAT instances. It works for all recent versions of the ICAT server thanks to a
JAX-WS dynamic client and allows display, editing and creation of any ICAT entity subject to
the authorization rules.

Though the SOAP interface is easy to use, it is somewhat restricted and there is a tendency to
bring back to the client side information which is not needed because it brings back whole rows
from the database. The REST interface uses the HTTP(S) methods PUT, DELETE, POST and
GET as appropriate. The REST interface is much more efficient because queries can be written
in JPQL to return exactly what is wanted. Detailed documentation for each call is generated
from the server code. Small client libraries are provided in Java and Python and mainly look
after error handling. The Python API is the more convenient to use because instead of dealing
with JSON strings you pass nested Python dicts and arrays.

3.1.4. Authorization Authorization is entirely rule based. Though rules can be related to a
specific row of a table in an ACL style this is not the way they are normally expected to be used.
The intention is that rules can be defined to implement a data policy, for example, to say that
if you are related to an Investigation then you can see all the data related to that Investigation.
You could also define a rule to say that all Datafiles older than some time are public. The
authorization system is such that if any rule allows the user to perform the action then it will
be allowed. There are no rules forbidding operations. The system is efficient because the rules
are used in a way that allows the database to do most of the computation.

3.1.5. Calls There are very few calls and, apart from three REST calls for TopCAT to utilise
the Lucene index, they are schema independent. The API is providing a generic approach to
accessing a relational database which follows a schema with a few special constraints as described
earlier. Some tables stored in the database are however special and can affect subsequent
operations. In particular the Rules table which controls authorization is populated and queried
like any other table but controls access to all ICAT operations.

REST calls support import/export of the contents of the ICAT database. These operations
like all the others are subject to the authorization rules.

3.2. IDS Server
This component provides an ‘ICAT friendly’ interface to data storage. The IDS stores the data
file itself and catalogues it as a Datafile object in the ICAT server. Calls are provided to store
an individual data file and calls to get, query the status of, and delete groups of data files as
specified by the IDs of Investigations, Datasets and Datafiles. TopCAT makes use of the IDS to
download data.

It is also possible to configure the IDS to be used in ‘Read Only’ mode where data files are
stored by some preexisting facility mechanism and the Datafile objects must then be created in
ICAT to reference these files.

3.2.1. Two Level Storage The IDS can be configured to use a single level of storage where data
are all available with low latency (e.g. disk) or it may be configured to use two levels of storage
known as main and archive. The main storage should have low latency and the archive storage
might have higher latency (e.g. tape). If the volume of data makes it not practical to hold all
data on low latency storage then two level storage must be used. All of the calls to the IDS
may be used irrespective of whether single or two level storage is used, however the archive and

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 19

restore calls are ignored for single level storage, and the prepareData call (which ensures that
data is brought back from archive to main storage) has no value.

When a file is written to the IDS it is first stored on main storage. Later it may be copied
to archive storage if a two level storage model has been adopted.

Though the server provides explicit archive and restore calls, the movement of data between
main and archive storage is normally handled automatically. The server configuration includes
high and low watermark levels for the size of main storage. A background process notices if the
high watermark is exceeded and requests the archiving of sufficient files to bring the main data
storage size down to the low water mark. A restore operation will be queued if an attempt is
made to access data that is not in main storage.

3.2.2. Plugin architecture Different facilities have different needs for external file structures.
To cope with this, interfaces have been defined which must be implemented by a plugin written
specifically for your facility. There are interfaces for main storage, archive storage and to define
the entry names in a zip file when a group of files are downloaded in one call to the IDS.

3.2.3. ICAT Coupling ICAT session ids are passed as an argument to most calls. The server
checks for READ access to the referenced data by a suitable call to ICAT. For put and delete
operations the server checks for CREATE and DELETE access to the referenced data and
makes the corresponding changes to ICAT to catalogue (create a Datafile entry in ICAT) or
uncatalogue the file. The server is coded to maintain consistency with ICAT. In the case of a
failure of software or hardware an orphan file may exist but there should never be an entry in
ICAT for which no file exists.

3.2.4. Accessing the service The IDS server exposes a REST interface using the HTTP(S)
methods PUT, DELETE, POST and GET as appropriate. Detailed documentation for each
call is generated from the server code and comments in that code. IDS clients are provided in
Java and Python.

3.2.5. Calls Many calls accept lists of IDs of Investigations, Datasets and Datafiles. The
operation to store a file needs an existing Dataset in ICAT to link it to. From a server perspective
the data is streamed in the body of the message. After the call the data stream will have been
stored as a file and will be catalogued as a Datafile. When retrieving multiple files a zip file will
be used to wrap them. As soon as the server has checked that the data are all available then
streaming of the result will start. There is a ‘getLink’ call to provide efficient access to a data
file if the file system hosting main storage is accessible to the user. It returns an absolute path
which is a hard link to the file which has a server defined lifetime. It is expected to be used
from a program which calls getLink and then immediately opens the file. Even if the hard link
is deleted by the server the file remains accessible because of the open file handle. ACLs are set
on the link to only allow read access to the user specified in the getLink call.

3.3. TopCAT
This is a web based GUI able to search across one or more ICAT server instances and download
data via the corresponding IDS server. Figure 1 shows how those ICAT components mentioned
so far might be used in conjunction with TopCAT. The browser communicates with TopCAT
which searches in the ICAT server (here labelled simply as ICAT). It can provide links to the IDS
to download specific files located by their metadata stored in the ICAT server. Each IDS sends
messages to its own ICAT server to make sure that any requested operations are authorized.
The IDS at the top of the figure is using an IDS plugin which communicates with a single storage

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 20

TopCAT

ICAT

ICAT

IDS

IDS

authn_XXX

authn_simple

authn_XXX

authn_ldap

IDS
Plugin

Single
Storage

IDS
Plugin Two level

Storage

User’s
Browser

Lines show flow
of control not data

User is unaware of
IDS communication

Figure 1. Block diagram showing some components

system. The IDS at the bottom is using a plugin able to communicate with two level storage:
main and archive. Each ICAT server is shown with two authenticators.

4. Recent developments
4.1. TopCAT
TopCat has already been mentioned as an established component however it has recently had
an overhaul so major that very few lines of old code remain. A major refactoring effort to
replace the GWT [9] by AngularJS (version 1) and bootstrap began. This took into account
a requirements gathering exercise mostly based on producing mockups and inviting comments.
TopCAT now includes a configurable set of data delivery mechanisms in addition to http(s). One
of these is the smartclient and the others are provided by PollCAT both of which are described
below.

4.2. smartclient
The smartclient is a small server packaged as a standalone program. The user downloads this
and starts the server which listens for requests from TopCAT to download some data and queues
a list of Datafiles to be downloaded. It then uses a number of threads to process the queue so
that it is doing a number of downloads in parallel from the IDS to local storage. It is a convenient
way to transfer a large amount of data to your desktop machine.

4.3. PollCAT
When PollCAT is asked to perform a download it polls the IDS until the data is ready, then
transfers it to a location determined by a plugin. Various plugins exist: for example to write to
PanFS [10] or to a Globus Connect Server [11]. PollCAT is a third party transfer mechanism.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 21

4.4. ICAT Job Portal
The IJP [12] was started in 2013. It makes use of the ICAT server to locate data to process
and can then submit and manage compute jobs for interactive or batch processing. These jobs
obtain their data from the IDS and write new data into the IDS. A job may record provenance
information in the ICAT server for future reference. Recently it was decided that this should also
migrate towards AngularJS and bootstrap. While prototyping this refactoring it was realised
that the code would have a lot in common with TopCAT; TopCAT finds data and downloads
it, the IJP finds data and submits it for processing. It was then decided that the most efficient
way forward was to add a plugin mechanism to TopCAT, which has very recently been done.
The plugin mechanism added to TopCAT also allowed a DOI (Digital Object Identifier) plugin
to be written. This communicates with another service to obtain DOIs.

4.5. Dashboard
The Dashboard is a web based GUI to give an overview of ICAT usage. It subscribes to
JMS messages transmitted by ICAT and IDS servers and also itself makes calls to ICAT. The
information is stored in a database. The Dashboard has a number of displays to show information
about users and where they are and about volumes of downloaded data. As a new component
this was written from the beginning with a Java back end and an AngularJS front end and will
soon be released.

5. Conclusion
The CSMD data model has evolved and has proved to be applicable to many different facilities.
The ICAT components have been designed to be loosely coupled and to make use of plugins where
extensibility is required so that they now meet the needs of a growing number of facilities. The
ICAT project is very much alive with well attended monthly virtual meetings and considerable
discussion outside the meetings in the ICAT forum.

References
[1] The ICAT Collaboration. The ICAT Project, accessed September 27, 2016. https://icatproject.org

doi:10.5286/SOFTWARE/ICAT.
[2] Matthews B M, Ashby J V, Bicarregui J C, Boyd D R S, Kleese van Dam K, Lambert S C, and ONeill K D.

The CLRC Data Portal. ERCIM News, (45):39–40, 2001.
[3] Sufi S and Matthews B M. CCLRC Scientific Metadata Model: Version 2. Technical Report DL-TR-2004-

001, Daresbury Laboratory, 2004.
[4] Fisher S M and Matthews B M. CSMD: the Core Scientific Metadata Model, accessed September 26, 2016.

http://icatproject-contrib.github.io/CSMD/csmd-4.0.html.
[5] Flannery D et al. ICAT: Integrating data infrastructure for facilities based science. In 5th IEEE International

Conference on e-Science. IEEE, December 2009. http://purl.org/net/epubs/manifestation/9367.
[6] Matthews B M, Sufi S, Flannery D, Lerusse L, Griffin T, Gleaves M, and Kleese van Dam K. Using a

Core Scientific Metadata Model in large-scale facilities. In 5th International Digital Curation Conference,
December 2009. http://purl.org/net/epubs/manifestation/4837.

[7] Lucene, accessed October 3, 2016. https://lucene.apache.org.
[8] Gospodnetic J. Lightweight SOAP client (Jurko’s fork), accessed September 27, 2016. https://pypi.

python.org/pypi/suds-jurko.
[9] GWT, accessed September 27, 2016. http://gwtproject.org.

[10] PanFS, accessed September 28, 2016. http://www.panasas.com/products/panfs.
[11] Globus Connect Server, accessed September 28, 2016. https://www.globus.org/globus-connect-server.
[12] Fisher S M, Phipps K, and Rolfe D J. ICAT Job Portal: a generic job submission system built on a scientific

data catalog. In Tamas Kiss, editor, IWSG 2013: 5th International Workshop on Science Gateways.
CEUR-WS, June 2013. http://ceur-ws.org/Vol-993/paper6.pdf.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 22

