
Community driven scientific software projects:

lessons learned on tools and practices

C Pascual-Izarra *, C Falcón-Torres, Z Reszela, G Cuńı, D
Fernández-Carreiras, G Jover-Manas and M Rosanes-Siscart

ALBA-CELLS Synchrotron, Cerdanyola del Vallés, Spain

E-mail: cpascual@cells.es, ctgensoft@cells.es

Abstract. On the one hand, science is about openness and collaboration and, on the other
hand, open and community-driven software projects have demonstrated to yield more generic
and resilient solutions thanks to the diverse users’ needs and feedback. Yet, the development
of many scientific software projects (even free/open-source ones) is still managed in a closed
way, typically by one or few people from a single institution. In some cases this is just
due to the lack of knowledge or confidence on the already available tools and practices for
collaborative development. In this work we share our experience on coordinating the transition
of the Taurus and Sardana projects from being in-house developments to being driven by an
international and diverse community. The initially established rules are constantly evolving
aiming to reach continuous delivery while maintaining good software quality. The selected
contribution workflows, testing strategies as well as the software and documentation delivery
tools are described in detail, and the benefits of this kind of organization as well as potential
pitfalls and lessons learned are discussed.

1. Introduction
It is generally accepted that software projects whose development is driven by a community
(as opposed to a closed group of developers) tend to become more resilient (e.g. against the
eventual leave of a main author), have better code quality (more bugs spotted and corrected),
attract more contributions (making them more generic) and, as a consequence, get a wider
exposure [1]. But this comes at some cost: first, one needs to provide tools for coordinating a
geographically dispersed community of developers; second, time must be devoted to document
procedures and policies and for supporting new developers in order to keep a coherent code
quality and style; third, the contributions require to be peer-reviewed before being incorporated
and, finally, a much stricter policy regarding the Application Programming Interface (API) is
required to avoid breaking other people’s developments.

While these are general good practices, closed-team development is more forgiving in taking
shortcuts and exceptions to them in the name of short-term benefits. Also, some authors may
fear the loss of control over their ”pet” projects, or may not be familiar with the tools and
practices available for collaborative development. This may explain why so many scientific
software is developed in a non-open way (even if it uses free/open-source licenses).

In the rest of this paper we will try to encourage scientific software authors to consider a
collaborative development model by showing the example of the Sardana [2, 3] and Taurus [4, 5]
projects, which successfully transitioned from in-house to community-driven development.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 1

DOI: 10.17199/NOBUGS2016.42

2. Background
Sardana and Taurus are projects initially developed to satisfy the needs for the ALBA
synchrotron beamline and accelerator control system [6]. Since their inception around 2009 (or
earlier) they were licensed as Free/Open Source software, but their development was internal to
ALBA and the code repository was only accessible from within the site.

In 2011, the code repositories for both Sardana and Taurus were moved to SourceForge [7]
in order to facilitate adoption by third parties, but the development model continued to be
essentially in-house and the support to other facilities was considered only a last priority.

Still, some other laboratories expressed their interest in using Taurus and Sardana, and as a
consequence the move towards a community-driven project was proposed in order to share both
the decision-making and the load of the development.

3. Opening the development
3.1. Seeding the Sardana Community
Following the example of the Tango Community [8, 9], which was initially based on a
Memorandum of Understanding (MoU), some attempts were done for signing a formal agreement
between the interested facilities. But the review and discussion on this MoU got delayed and
the community still has no institutional agreement (nor seems to require one so far).

On technical grounds, the first efforts were put to formalize the processes on how to contribute
to the project. For shared design decisions, the Sardana Enhancement Proposal (SEP) [10]
process was agreed, inspired on Debian Enhancement Proposal (DEP) [11]. The SEP process
defines the discussion workflow for promoting ideas into actual Sardana or Taurus features or
policies. Regarding code contributions, a process for public code review was discussed and agreed
[12]. It not only promotes the quality of the code but it also benefits the developers who can
easily share their knowledge. Following the example of the Linux kernel project, we based the
review process on patches sent and discussed by email (which only requires an email client, and
does not require to log into any external service). But, in retrospective, we found two main
issues: for the integrators it is cumbersome, especially when the contributions accumulate in
the lists; for the contributors, it requires to learn and follow some conventions when emailing or
discussing their contributions.

A biannual release cycle was selected according to the needs of the involved institutes. Each of
the releases, preceded by extensive manual tests on various platforms, ensure a periodic checkup
of the project. In addition, the pending issues may be assigned to a given release, improving
the project transparency.

Two mailing lists, one dedicated to the developers and the other to the users were created.
They are the main discussion and support channel, with lots of participants. As a negative note,
the traffic generated by the code review process tends to bloat the developers list.

Additionally to the written communication, the community members organize open annual
Sardana Meetings, where the technical aspects and roadmaps are discussed. Initially, video
conferences were considered as a complement to the presential meetings but they are not so
common for now.

3.2. Tools and methodologies adopted for community development
The Git [13] distributed version control system facilitates workflows for collaboration between
disperse groups of developers. For this reason, both Taurus and Sardana migrated their code
from a SVN repository into a Git one within the SourceForge platform and adopted the gitflow
rules [14], which fit well with the biannual release cycle.

In the last years Github [15] became increasingly popular. Sardana and Taurus, similarly
to the Tango community projects, will soon migrate from SourceForge to GitHub, attracted
by its user-friendliness and the possibilities enabled by its tools and related services to better

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 2

coordinate a community. The Github pull-request and the code-review workflows will make the
contribution process more agile and hopefully bring more participants.

Performing manual tests of the overall project on each incoming contribution resulted to
be time consuming and error prone. Therefore, the SEP5 [16] was proposed, defining some
basic rules on how to develop consistent automated tests. Since providing full test coverage for
already-existing projects such as ours is not practical [17], we focused on developing happy path
tests for existing code, while encouraging Test Driven Development (TDD) for new features.
Also, when working in a team, we try to alternate the person writing the tests and the one
implementing the functionality.

The automated tests deliver their full benefits when using them together with the Continuous
Integration (CI) practice. Employing disposable Docker [18] containers as the underpinning
technology, facilitates the design and implementation of the testing infrastructure and helps
with test isolation. Having a public CI service is crucial in collaborative projects. This could be
achieved by exposing an internal CI server to the external users (in ALBA we use Mr. Jenkins
[19] internally). However, we opted to set up the Taurus and Sardana CI on external platforms
instead (Travis [20] and Appveyor [21]), mainly because: a) we reduce maintenance efforts related
to supporting account creation, security, etc; b) it makes the communitary infrastructure less
dependent on one specific facility; and c) they integrate smoothly with Github and Docker.

The up-to-date and verbose documentation is very important when it comes to sharing
the project among many institutes. The Sardana and Taurus documentation is written using
Sphinx [22] and was originally hosted on ALBA’s internet servers. This setup required manual
builds and deployments on every release, which was tedious and impractical. Consequently,
we migrated the documentation to the Read the Docs (RTD) platform [23] which builds new
docs after each commit to the Git repository and, at the same time liberated us from the
infrastructure maintenance. However, while the benefits of the continuous documentation
practice are unquestionable, the adequacy of RTD for projects such as Sardana or Taurus is
being reconsidered for the following reasons: a) it forces us to implement and maintain mocks for
the various non-pure-python dependencies; b) it is prone to spurious false-positive build failures
and c) its environment is difficult to replicate locally when debugging is required. Alternatively,
a Travis based solution may be implemented in the future for deploying the documentation.

3.3. Coming next
While employing CI brings benefits for the developers, it does not add a direct benefit for the
user. The road of the software towards the production stage does not end after a successful build
or unit test execution [24, 17]. In continuation of the CI step, the rest of the Continuous Delivery
(CD) pipeline needs to be implemented providing a fully automated, reliable, repeatable and
constantly improving process ended with a ready-to-deploy software package. GitHub features
such as the automatic releases or staging areas together with Travis CI (with Docker) and
Appveyor will be very useful in building such pipelines. However, since not all parts of the
code are automatically tested, the less common use cases will still need to be tested manually.
Optimally, these tests should be based on the user documentation, explaining how to interact
with the system.

The user could benefit even more if the developers collaboration is extrapolated into the
packagers collaboration i.e. the software would become available as high quality packages for
the most popular platforms. Currently Sardana and Taurus projects are present in the official
Debian [25] repositories, mostly thanks to the effort of a single packager. We believe that all the
benefits of the collaborative development could be achieved in the packaging processes as well.
Platforms such as Alioth [26] or OBS [27] are some examples on how to implement collaborative
packaging. The artifacts produced by the CI step could indeed be distribution packages that
could be used in the subsequent steps of the CD pipeline and finally become a software update.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 3

Plenty of other ideas are being evaluated or planned to be implemented in our collaboration.
The most interesting ones are the automatic code-style checks for the contributions, the unit
test coverage metrics or the voting for the pending issues for the priority assignment. Due to
the lack of space they are skipped in this paper.

4. Beyond the technologies
While the technologies and procedures are important, the success in building and coordinating
a community of developers is also based on other factors. In our case, the following were
determinant:

• Being responsive and encouraging towards users and contributors. Even prioritizing support
to external members over those from our own facility (thinking in the longer-term goal of
building a strong community).

• Having a ”gradual strictness policy”: we expect contributors to follow certain conventions,
but we try not to scare first-timers by being too strict with their contributions, and rather
educating them as they become more involved in the community. In the meanwhile, the
integrators accept the burden of adapting the contributions to keep the quality standards.

• Using standard tools and services: when deciding on alternative tools or services, value
what the potential contributors are already using and know. Avoid requiring them to join
many online services, and of course make sure that all the applications that we recommend
are freely available (i.e. Free/OpenSource software).

• Using well-known and documented workflows: just as with the tools, prioritize what the
potential contributors already may be familiar with. Even to the point of preferring
sub-optimal but well-known and well-documented workflows over perfectly-customized but
unique ones that would require contributors to learn one more specific convention and also
require ourselves to invest time documenting it.

• Making code modular: this is a good practice in general, but even more for distributed
development since it allows less experienced contributors to collaborate without fear of
breaking critical parts. It also enables parallel developments.

• Being transparent: use public channels (such as mailing lists, tickets, Enhancement Proposal
documents, etc) for all development-related discussions. Even when the participants are
on the same site or exchange private emails regularly. In this way, others may join the
discussion or at least understand the motivations of previous decisions.

• Document everything. From the APIs (obvious) to the design goals and agreed roadmaps
(see previous point). This facilitates outsiders to join the community.

• Ensuring the agreements are being followed: one or more developers get the sheriff role to
keep an eye on CI tests status, code static analysis, unattended queues, etc., and remind
the rest of the community to act in case of deficiencies.

5. Conclusions
Moving from an in-house development model into a community-driven one was a key for the
success of the Sardana and Taurus projects, whose user base grew in the last three years from
a few institutions to dozens of laboratories and several companies offering support for them
[4]. The contributors community is also starting to grow (see 1) and we expect it to be further
expanded with the adoption of more agile contribution workflows in the near future.

The transition required ALBA to invest a lot of effort into tasks whose results were
not immediate or which were competing with ALBA’s most urgent issues, but which were,
nevertheless, deemed necessary on a longer-term perspective.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 4

Figure 1. Contributions (measured as number of lines changed) in Taurus and Sardana projects
for the period between Jul15 and Jul16 releases, grouped by author’s institution

In order to facilitate the incorporation of external developers and to underline the community
orientation of the projects, we favored solutions based on external providers (SourceForge,
GitHub, Read the Docs, Travis, etc.) instead of on-site infrastructure. We also invested in
learning and using standard practices and tools and in engaging, supporting and encouraging
contributors.

Of all the decisions regarding tools and workflows, some worked excellently so far, while
others already showed some weaknesses and yet some clearly failed but allowed us to learn in
the process. We hope that our experiences can also be useful for other projects considering a
similar transition.

Acknowledgments
We would like to thank the Sardana and Taurus community members and the ALBA Controls
Group and, specially, to T Nunez, J Kotanski and T Kracht (DESY), T Coutinho, V Valls
(ESRF), V Michel and A Milan (MaxIV), S Gara (Nexeya), P Goryl and L Zytniak (Solaris),
F Picca (Soleil), J Krüger (TUM) and J Andreu, S Blanch, R Homs, J Moldes and D Roldan
(ALBA) for their contributions to Sardana and Taurus.

References
[1] E.S. Raymond. The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental

Revolutionary. O’Reilly Media, 2001.
[2] T Coutinho, G Cuńı, D Fernández-Carreiras, J Klora, C Pascual-Izarra, Z Reszela, R Suñé, A Homs, E Taurel,

and V Rey. Sardana: The software for building scadas in scientific environments. ICALEPCS2011,
Grenoble, France, 2011.

[3] Sardana website. http://www.sardana-controls.org/.
[4] C Pascual-Izarra, G Cuńı, C Falcón-Torres, D Fernández-Carreiras, Z Reszela, and M Rosanes. Effortless

creation of control & data acquisition graphical user interfaces with taurus. ICALEPCS2015, Melbourne,
Australia, 2015.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 5

[5] Taurus website. http://www.taurus-scada.org/.
[6] David Fernández-Carreiras et al. The design of the alba control system. a cost-effective distributed hardware

and software architecture. ICALEPS2011, Grenoble, France, page 1318, 2011.
[7] SourceForge website. https://sourceforge.net/.
[8] Andrew Götz et al. The tango controls collaboration in 2015. ICALEPCS2015, Melbourne, Australia, 2015.
[9] Tango website. http://www.tango-controls.org/.

[10] C. Pascual-Izarra. SEP0 website. https://sourceforge.net/p/sardana/wiki/SEP0/, 2013.
[11] Debian Enhancement Proposal website. http://dep.debian.net/deps/dep0/.
[12] C. Pascual-Izarra. SEP7 website. https://sourceforge.net/p/sardana/wiki/SEP7/, 2013.
[13] Git website. https://git-scm.com/.
[14] GitFlow website. http://nvie.com/posts/a-successful-git-branching-model/.
[15] GitHub website. https://github.com/.
[16] M. Rosanes-Siscart. SEP5 website. https://sourceforge.net/p/sardana/wiki/SEP5/, 2013.
[17] Jez Humble and David Farley. Continuous delivery: reliable software releases through build, test, and

deployment automation. Pearson Education, 2010.
[18] Docker website. https://www.docker.com/.
[19] Jenkins website. https://jenkins.io/.
[20] Travis website. https://travis-ci.org/.
[21] AppVeyor website. https://www.appveyor.com/.
[22] Sphinx website. http://www.sphinx-doc.org/.
[23] Read the Docs website. https://readthedocs.org/.
[24] Z Reszela, G Cuni, CM Falcón Torres, D Fernandez-Carreiras, G Jover-Mañas, C Pascual-Izarra, R Pastor

Ortiz, M Rosanes Siscart, and S Rubio-Manrique. Bringing quality in the controls software delivery
process. ICALEPCS2015, Melbourne, Australia, 2015.

[25] Debian website. https://www.debian.org/.
[26] Alioth website. https://alioth.debian.org/.
[27] openSUSE Build Service website. https://build.opensuse.org/.

NOBUGS 2016 Proceedings - New Opportunities for Better User Group Software 6

