
Python useful features for experiment

control systems programming

Python programming language is popular, in particular for the programming and control systems as a basic programming language and as a language for

programming user interfaces (GUI). In the programming complex Sonix+ the Python successfully used for both of these. The presentation will be devoted to some

nice language features useful for programming instrument control software.

Reference [Sonix +] http://sonix.jinr.ru/wiki/doku.php?id=en:ndex

Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia.

E-mails: akirilov@nf.jinr.ru, akirilov@jinr.ru

Use the Python introspection for the GUI universalization

There is a widget for manual device control in the Sonix+ GUI. This widget allows the User to select device from list and then

select one of the available command for this device. It is important to emphasize that necessary information is obtained

automatically so the widget code is instrument independent. In order to organize a unified device independent manual

interface it is necessary to obtain list of available devices and a list of commands available for each device.

In the Sonix+ these information is concentrated in several Python files. The instrument configuration file contains full list off

devices with appropriate names and IDs. Besides the are device description files to describe functionality of concrete device

as a Python class. The necessary data is extracted directly from the Python environment.

This extraction is illustrated for the YuMO instrument as an example. At first import the configuration file and have a look at

the object list
>>> import yumo_python_configuration as y

>>> dir(y)

['ASExecute', 'ASSignalize', 'CloseSession', 'CommError', 'CreateVarmanVariableBA', 'DeviceInfo',

'GetASResult', 'GetVersion', 'InitAsStruct', 'LoadDB', 'OpenSession', 'ReadAsString', 'ReadAsStruct',

'SExecute', 'SSignalize', 'SaveDB', 'SendCommand', 'WaitLocker', 'WriteAsString',

. . .

'vanady1_2det_soft', 'vanady2', 'vanady2_1det', 'vanady2_1det_soft', 'vanady2_2det',

'vanady2_2det_soft', 'vanady2_soft']

This list includes among others device names, which we need to select. It is easy because all device instances belong to

device class.
>>> s = []

>>> for i in dir(y):

... d = getattr(y, i)

... if isinstance(d, y.device):

... s.append(i)

...

>>> s

['beam_shutter', 'chopper', 'collimator', 'configList',

. . .

'vanady1_2det_soft', 'vanady2', 'vanady2_1det', 'vanady2_1det_soft', 'vanady2_2det',

'vanady2_2det_soft', 'vanady2_soft']

>>>

This list s is the actual instrument device list. Next step is to obtain list of available commands (class methods) for each

device. For instance lets consider device g_table. Get a reference to the component by its name.
>>> g = getattr(y, 'g_table')

Its directory
>>> dir(g)

['GetStateId', 'GetStateName', 'Set', 'SetByName', '__doc__', '__init__', '__module__', 'id', 'name',

'server_name']

Look name of the module (server) for the device. (It may be useful to check the mailbox in the database, i.e., that the module

was really loaded, and it is possible to send a command).
>>> getattr(g, 'server_name')

'tabular_adapter'

Get a list of object's methods, i.e. a list of device commands
>>> import inspect

>>> inspect.getmembers(g, inspect.ismethod) ## not isfunction !!!

[('GetStateId', <bound method tabular.GetStateId of <adapters_def.tabular instance at 0x00F0FCD8>>),

('GetStateName', <bound method tabular.GetStateName of <adapters_def.tabular instance at 0x00F0FCD8>>),

('Set', <bound method tabular.Set of <adapters_def.tabular instance at 0x00F0FCD8>>), ('SetByName',

<bound method tabular.SetByName of <adapters_def.tabular instance at 0x00F0FCD8>>), ('__init__', <bound

method tabular.__init__ of <adapters_def.tabular instance at 0x00F0FCD8>>)]

>>> gsm = inspect.getmembers(g, inspect.ismethod)

>>> len(gsm)

5

Select one of the options, for example, Set command
>>> gsm[2][1]

<bound method tabular.Set of <adapters_def.tabular instance at 0x00F0FCD8>>

>>> f = gsm[2][1]

One can get it source
>>> lfs = inspect.getsourcelines(f)

>>> lfs[0]

['\tdef Set (self, state_id):\n', '\t\tif (type(1) == type(state_id)):\n', '\t\t\treturn

SExecute(self.server_name, 14000, str((self.id, state_id)))\n', "\t\treturn 'error state id'\n"]

and the first line (for the parameter prompts)
>>> lfs[0][0]

'\tdef Set (self, state_id):\n'

Thus, from the configuration file, we can get a list of all announced devices, for each device - to form a full list of commands,

for each command - prompt with the names of the parameters.

Use breakpoints to control the process of script interpretation

In the Sonix+ script is a pure Python code. It mostly consists of calls functions from so-called instrument library - a set of

Python procedures implementing typical operations. These procedures may be considered as instrument commands.

The interpretation of this code is performed by special module "Interpreter of script"(Is) written in C++. To control the process

the User needs to be able to suspend/resume, or abort the interpretation. Thus, simple PyRun_String or PyRun_File are not

acceptable. To realize these opportunities the Pythons debugger class (Pdb) can solve the problem. However it strongly slows

down the process if there is a mathematical processing of large arrays in script.

For saving normal speed of execution it is offered to enter quantization of actions in a script by means of so called break

points. To do this, the special procedure module cont_points was developed. Each instrument command source begins with

call of
cont_points.SetCPoint (1)

or
cont_points.SetCPoint (1, "Set Collimator 40 (1), wait ...")

where options specify the level of the reference point and, if desired, an auxiliary comment.

This call can be point of intervention into the interpretation process by the script interpreter. First parameter of the
SetCPoint procedure is a control point level. It is assumed, that the top level 1 is assigned to spectrometer commands. The

lower levels are assigned to less valuable operations. The lowest level 100 is devoted to commands of direct device control.

Control points hierarchy allows the User to perform measurement procedure step-by-step at necessary level of detailing.

The diagram of communication of the interpreter and the executed script is given above.

The Is interpreter module interacts with the Python interpreter through the communication library (Python extension) which

provides transmission of parameters, signals, flags. The program of measurement is launched via the cont_points module

which implements the concept of break points.

To implement the approach Python modules cmd, and inspect were used. The first contains class Cmd, which is very

convenient for the realization of specialized interpretators based on the Python. Second - implements some useful functions to

obtain information on existing objects, such as modules, classes, methods, etc.

The new class MyCmd on the base of original Cmd has been designed. New features like command to go the next break

point, abort the execution, necessary flags and parameters were added. The possibility of input of arbitrary commands and

execute it in current context was preserved also.

The cont_points module is supplied with a flag of DisableContPointsFlag which allows to control check permission. It is

necessary, for example, when checking a correctness of a script.

Checking the script correctness

Preliminary check of a correctness of a script significantly reduces probability of errors of its execution, first of all due to

detection of syntax errors, misprints, etc. The Python built-in compile function does not guarantee the correctness of the

script.

As the library of instruments commands can be appended or modified at any moment, so self-examination of the parameters

shall be executed in each command of a spectrometer.

It is important that in the check mode the script should not be executed, otherwise it doesn't make a sense.

Used in scriptutils.py procedure TabNanny (PythonWin) additionally allows you to check the correctness of the indentation

structure But it isn't enough. For example, this check can not find misprints in the parameter list of commands.

To check the correctness of the script before the actual implementation of the following scheme was proposed.

Each command primarily checks its parameters. For this purpose next statement is inserted into a body of a command

if CheckParameters (<list type command parameters>):

return (0, "No errors")

In normal operation mode CheckParameters procedure is ignored. In the test mode type compatibility of the actual

command parameters is checked with one specified in CheckParameters. In case of error SyntaxError exception with

specifying of number of erratic parameter is generated. The Test mode is controlled with special external flag. A available

types of parameters are numbers ('int', 'float'), text strings ('str'), device names (' dev ') and Varman database variables

names (' var '). All this looks approximately so

def ElementaryMeasurement (n_meas, i, n_lost, tmpfn, df, zsum_mask, sum_proc):

cont_points.SetCPoint (1) # assign checkpoint

if com.CheckParameters ('int', 'int', 'int', 'str', 'str', 'str'):

return (0, "No errors")

. . .

During testing actual values of parameters are obtained from an external frame. Test procedure is performed automatically

in the Sonix+ GUI after script selection.

The solution offered here is analogy to common block in the

FORTRAN language. Let's select the separate module data

contains cross-reference data from other modules. Actually

Python create imported modules only once. So all other modules

witch imports this "post box" module will be really connected to

the same copy. In the example below the initially empty dictionary

is devoted to be used by other modules.

Next sketch shows an example of use of this principle. The A1

module has a variable (structure, function, and so on - the object),

which is necessary in the B1 module.

Main

Module A
Module B

Module A1

from common

import Common

a = ...

Common ['a'] = a

Module B1 Module B2

from common

import Common

b = Common ['a']

Module A2

common

Common ={ }

PyState

RLevel

FRAME

PARAMETERS

Filename

Name

Lineno

Line

OUTPUT

Out

Err

Final

Alevel

Comment

Command

cont_points.py:

SetCPoint()

run()

OutputIsReady

EnterCommand

NSFlag

AbortFlag

IS
Parameters:

rlevel

Status:

state

diagn_line

file_name

line_num

proc_name

command

alevel

Commands:

init

close

start fname

start_step fname

stop

step

cont

abort

any command

set_r_level level

Signals:

suspend

continue

break

None

Init (Error, Abort)

Busy

Wait

IS states:

init

ready

busy

The scheme of the Is interpreter mplementation

Exposure manipulation with the help

of the manual control widget The YuMO instrument script example

Programming cross-references for GUI widgets on PyQT

In case of assembly of user interfaces (GUI) from a set of components on there is a problem of data access arrangement, being in

other branch of a structural tree. These data can be parameter values, links to methods (functions), etc. Especially as a part of

components (widgets) can be used as independently, so as a part of other components. For example, the Sonix+ universal GUI

contains the widget for direct stepper motor control. This opportunity is enabled before measurement start, but must be forbidden

measurement script is executing.

The complexity of solutions due to the fact that the interface has a tree unpredictable structure of widgets that are created

independently from each other. There is also a need to get a reference to concrete objects.

The Sonix+ has parameter storage Varman which could be help to parameters exchange. But the Varman can not transfer

addresses of functions. Besides, for some programs it is desirable to make possible of using these programs without the Varman,

for example, for off line spectra visualization.

One possible solution is put all the data structures in the top window widget. In this case, each class must be complemented by

means of search the "root" window and storing and retrieving the necessary data. It is only possible to organize it if each widget

in a hierarchical tree follows these rules as search of the main window is carried out strictly on widgets call chain.

