

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Prospects for finding light Z^\prime from CEvNS at ESS

Johan Rathsman Work in progress with: Joakim Cederkäll, Yaşar Hiçyılmaz, Else Lytken, Stefano Moretti

FPNP@ESS, 2025-01-17

${\sf Light}\ {\sf Z}'\ {\sf models}$

CEvNS light Z^{\prime}

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Assume extra U(1) gauge symmetry giving additional Z' gauge boson
B-L well known example

$$\mathcal{L}_{
m NC}^{
m Z'} = -\sum_f ar{\psi}_f (\gamma^\mu C_V^f + \gamma^\mu \gamma^5 C_A^f) \psi_f Z'_\mu$$

In B-L models
$$C_V^f=g_{Z'}Q_f'$$
 with $Q_u'=Q_d'=1/3$ and $Q_{
u_\ell}'=-1.$

- here we assume fermion charges only constrained by anomaly conditions
- possible to explain so called Atomki anomaly with a 17 MeV Z' (X17)
- would modify normalisation and shape of nuclear recoil spectrum in CEvNS

Benmark models allowed by current constraints

CEvNS light Z'

Johan Rathsman	Parameter	BM111	BM222	BM333	BM444	BM666
Light Z' models	g'	2.51×10^{-5}	3.48×10^{-5}	1.57×10^{-5}	1.81×10^{-5}	1.88×10^{-5}
Neutrino flux from	$m_{Z'}$ [GeV]	0.0175	0.0174	0.0175	0.0166	0.0171
π^+ decay at rest	C_V^u	-2.49×10^{-4}	-2.55×10^{-4}	-2.48×10^{-4}	-2.49×10^{-4}	-2.54×10^{-4}
CEVNS	C_V^d	$1.43 { imes} 10^{-4}$	$1.46 { imes} 10^{-4}$	$1.39 { imes} 10^{-4}$	1.09×10^{-4}	1.12×10^{-4}
Detector considerations	$C_V^{\nu_e}$	1.38×10^{-5}	$1.39{ imes}10^{-5}$	1.10×10^{-5}	-1.18×10^{-5}	-1.13×10^{-5}
Statistics	$C_V^{\check{ u}_\mu}$	2.01×10^{-5}	$1.74 { imes} 10^{-5}$	1.25×10^{-5}	-1.27×10^{-5}	-1.13×10^{-5}
Backgrounds and	-					

Backgrounds and systematics

Summary and conclusions

Neutrino flux from π^+ decay at rest

CEvNS light Z'

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

• $x = rac{2E_
u}{m_\mu}$, 0 < x < 1

- r nr of π^+ per proton,
- N_{POT} nr of protons on target,
- L distance

Nuclear recoil energy spectrum for CEvNS

$$\frac{dN}{dy} = \frac{rN_{\rm POT}}{4\pi L^2} \frac{G_F^2 m_{\mu}^2}{4\pi} \sum_{\nu_{\ell}} \left[\frac{dn_{\nu_{\ell}}}{dy} (Q_V^{\nu_{\ell}})^2 \right]$$

CEvNS light \mathbf{Z}'

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

•
$$y = rac{2ME_{
m nr}}{m_{\mu}^2}$$
 , $0 < y < 1$

- M nucleus mass.
- $E_{\rm nr}$ nuclear recoil energy

$$\begin{array}{lll} \frac{dn_{\nu_e}}{dy}_V &=& \frac{1}{2} - 3y + 4y^{3/2} - \frac{3}{2}y^2 \\ \frac{dn_{\nu_{\mu}}}{dy}_V &=& \frac{1}{2} - 2y + 2y^{3/2} - \frac{1}{2}y^2 + \left(\frac{1}{2} - \frac{y}{2x_0^2}\right) \Theta\left(1 - \frac{y}{x_0^2}\right) \\ Q_V^{\nu_\ell} &=& g_V^{p,\nu_\ell} \, Z \, F_{V,Z}(y) + g_V^{n,\nu_\ell} \, N \, F_{V,N}(y) \end{array}$$

Klein Nystrand nuclear form factor

 $F_{V,Z}(y)$ and $F_{V,N}(y)$ nuclear form factors for protons and neutrons

$$F_{V,Z}(Q^2) = F_{V,N}(Q^2) = rac{3}{(QR_A)^3} \left[\sin(QR_A) - QR_A \cos(QR_A) \right] rac{1}{1+Q^2}$$

CEvNS light Z' Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Vector couplings

Vector couplings of neutrinos to protons and neutrons modified by Z' exchange

 $g_V^{
ho,
u_\ell} = g_{V,{
m SM}}^{
ho} + rac{\sqrt{2}C_V^{
u_\ell}(2C_V^u+C_V^d)}{G_F(ym_\mu^2+m_{Z'}^2)}$

 $g_V^{n,
u_\ell} = g_{V,{
m SM}}^n + rac{\sqrt{2}C_V^{
u_\ell}(C_V^u + 2C_V^d)}{G_F(ym_u^2 + m_{Z'}^2)}$

CEvNS light Z'

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

for the SM we use the LO values

Statistics

Backgrounds and systematics

Summary and conclusions

$$egin{array}{rcl} g^p_{V,\mathrm{SM}}&=&(1-4\sin^2 heta_W)\ g^n_{V,\mathrm{SM}}&=&-1 \end{array}$$

with $sin^2\theta_W = 0.24$

Z^\prime signal ratio compared to SM

CEvNS light Z'

Using $F_{V,Z}(y) = F_{V,N}(y)$ the signal ratio compared to the SM becomes

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

$$\left[\sum_{\nu_{\ell}} \frac{dn_{\nu_{\ell}}}{dy} \sqrt{\left(-1 + \frac{\sqrt{2}C_{V}^{\nu_{\ell}}[N(C_{V}^{u} + 2C_{V}^{d}) + Z(2C_{V}^{u} + C_{V}^{d})]}{[N - (1 - 4\sin^{2}\theta_{W})Z]G_{F}m_{\mu}^{2}(y + m_{Z'}^{2}/m_{\mu}^{2})}\right)^{2}\right] / \left[\sum_{\nu_{\ell}} \frac{dn_{\nu_{\ell}}}{dy} \sqrt{\frac{1}{V}}\right]$$

for B - L model this reduces to

$$\left(1 + \frac{\sqrt{2}g_{Z'}^2(N+Z)}{[N - (1 - 4\sin^2\theta_W)Z]G_F m_{\mu}^2(y + m_{Z'}^2/m_{\mu}^2)}\right)^2$$

Current limits on B-L model from Atzori Corona et al (2202.11002): $g_{Z'}<5\times10^{-5}$ for $m_{Z'}=0.017~{\rm GeV}$

- will use this a reference model/parameter value

CEvNS light Z^\prime

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Johan Rathsman

Neutrino flux from

 π^+ decay at rest

CEvNS

Detector

Statistics Backgrounds and

systematics Summary and

conclusions

note: independent of nuclear mass

 $C_{\rm eff}^{\nu_e} [10^{-8}]$

Detector considerations

CEvNS light Z'

Johan Rathsman

Light Z' models

 $y_{\rm ion} = Q(y)y$

Summary and conclusions

Modifications added to span uncertainties at small recoil energies Threshold \sim 800 eV \Rightarrow y $\gtrsim 0.01$

Germanium detector as an example (inspired by Dreden-II exp)

Quenching factor: conversion of nuclear recoil to ionisation signal

Detector considerations, cont'd

$$R(y_{
m rec}, y_{
m ion}) = rac{1}{\sigma \sqrt{2\pi}} \exp \left[-rac{(y_{
m rec} - y_{
m ion})^2}{2\sigma^2}
ight]$$

CEvNS light \mathbf{Z}'

Johan Rathsman

Statistics

CEvNS light Z^{\prime}

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Flux factor $\frac{rN_{\rm POT}}{4\pi L^2}$ assuming 5000 hours per year of beam on target

	Far, L=25 m			
Parameter	Low	Med	High	
Beam energy [GeV]	0.84	0.84	2.0	
Yeild <i>r</i>	0.08	0.08	0.3	
Power [MW]	0.80	2.0	5.0	
$N_{ m POT}$ [year $^{-1}$]	$1.1 imes 10^{23}$	$2.7 imes10^{23}$	$2.7 imes10^{23}$	
Time in years	1	3	3	
Flux factor [GeV ²]	$4.3 imes10^{-14}$	$3.2 imes 10^{-13}$	$1.2 imes 10^{-12}$	

Also assuming $m_{\rm target} = 20 \ {\rm kg}$

conclusions

Number of events in HighFar scenario

)F1 Recoil spectra: Vector SM + Z' and SM for different BM dN/dy_{rec} CEvNS light Z' BM111 Johan Rathsman 10⁵ BM222 Light Z' models BM333 Neutrino flux from π^+ decay at rest 10⁴ — BM444 **CEvNS** BM666 Detector considerations 1000 B–L Statistics SM ____ Backgrounds and 100 systematics $y_{\rm rec}$ 0.05 0.10 0.15 0.20 0.25 0.30 Summary and

Johan Rathsman

Backgrounds and systematics

Backgrounds

- Reducible: neutron induced nuclear recoils
 - prompt
 - ambient here the duty factor helps
- Irreducible
 - Standard Model

Light Z' models Neutrino flux from π^+ decay at rest

CEvNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

Based on C. M. Lewis (PhD thesis U Chicago) (rescaled Csl to Ge)

Johan Rathsman

Backgrounds and systematics, cont'd

- Systematic uncertainties
 - neutrino flux uncertainties in r assume 10 %
 - quenching factor

OF2/OF1 Ratio of Ratios: Vector SM + Z' to SM for B-L OF2/OF1 Ratio of Ratios: Vector SM + Z' to SM for B-L dr/dy_{rec} dr/dy_{rec} Light Z' models 1.15 1.15 r Neutrino flux from π^+ decay at rest 1.10 1.10 — B-L — B-L 1.05 1.05 Detector considerations 1.00 1.00 Statistics Backgrounds and 0.05 0.30 Yrec 0.95 **V**_{rec} 0.20 0.25 0.05 0.10 0.005 0.050 0.100 systematics

Summary and conclusions

CEVNS

- small for $v_{\rm rec} > 0.02$
- up to 15 % at threshold $y_{rec} = 0.0024 (0.200 \text{ keV}_{ee})$

Resulting ratio to SM

Smeared QF1 Ratio: Vector SM + Z' to SM for different BM IND dR/dy_{rec} 5 BM111 CEvNS light Z' BM222 4 Johan Rathsman BM333 Light Z' models з Neutrino flux from BM444 π^+ decay at rest CEVNS BM666 2 Detector B-L considerations Statistics SM Backgrounds and systematics 0 $y_{\rm rec}$ Summary and 0.30 0.05 0.10 0.15 0.20 0.25 conclusions statistical error (in black) $1/\sqrt{N_{\rm SM}} \sim 5$ % systematic errors: $R_{\rm OF} + R_{\rm flux} + R_{\rm neutron}$

Johan Rathsman

Light Z' models

Neutrino flux from π^+ decay at rest

CEVNS

Detector considerations

Statistics

Backgrounds and systematics

Summary and conclusions

signal ratio - 3.5 black: SM - 2.5

magenta: B-L $g_{Z'} =$ $2, 3, 4, 5 \times 10^{-5}$ red: X17 BMs

 $C_{\rm eff}^{\nu_e} [10^{-8}]$

Summary and conclusions

CEvNS light \mathbf{Z}'

Johan Rathsman

- Light Z' models
- Neutrino flux from π^+ decay at rest
- CEvNS
- Detector considerations
- Statistics
- Backgrounds and systematics
- Summary and conclusions

- \bullet CEvNS very promising for finding light Z' gauge boson
- $\bullet\,$ For $m_{Z'}\sim 20$ MeV the shape could also be used
- Current limits allow for a factor 2 up or down compared to SM cross-section
- Currently systematics limiting factor
- few percent statistical uncertainty possible to reach with 5 MW