HELMHOLTZAI ARTIFICIAL INTELLIGENCE COOPERATION UNIT

SAMPLING NEUTRONS WITH ARTIFICIAL INTELLIGENCE

José I. Robledo

Jülich Supercomputing Centre (JSC)

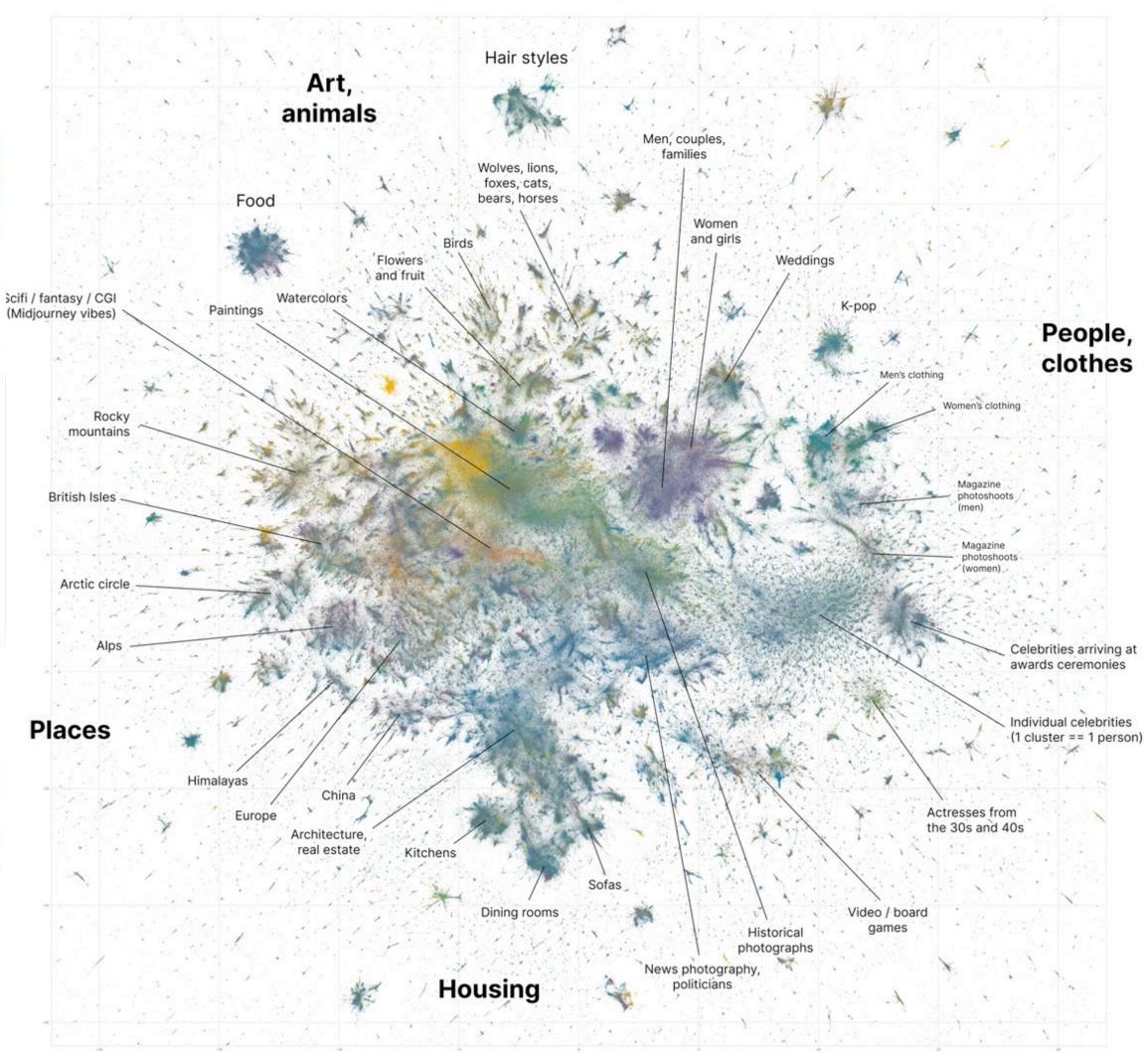
Jülich Centre for Neutron Science (JCNS)

Forschungszentrum Jülich (FZJ)

INTRODUCTION

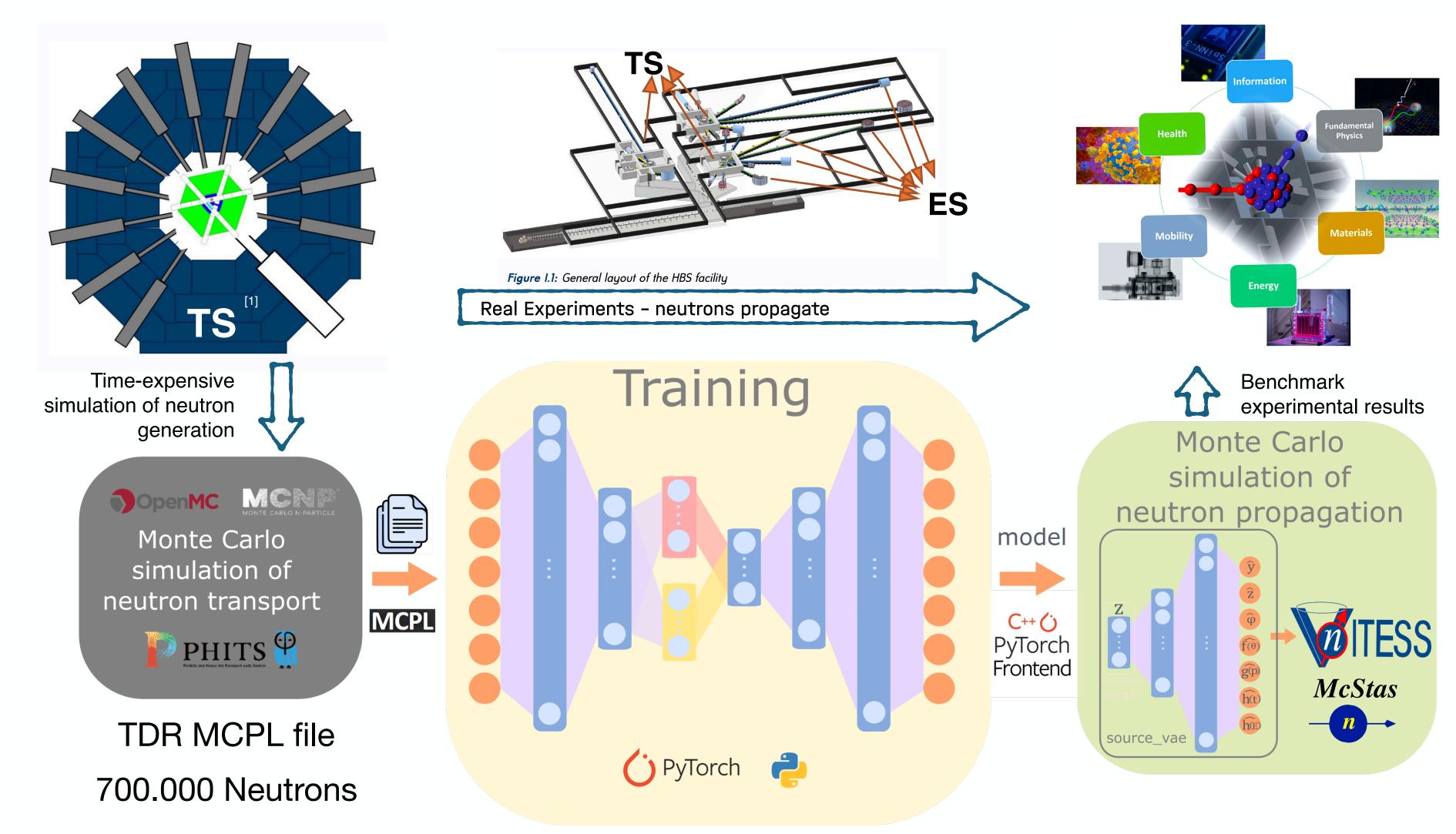
All captions from LAION-Aesthetics with score > 6 (n=12M)

Embedded with CLIP, UMAP to 2d

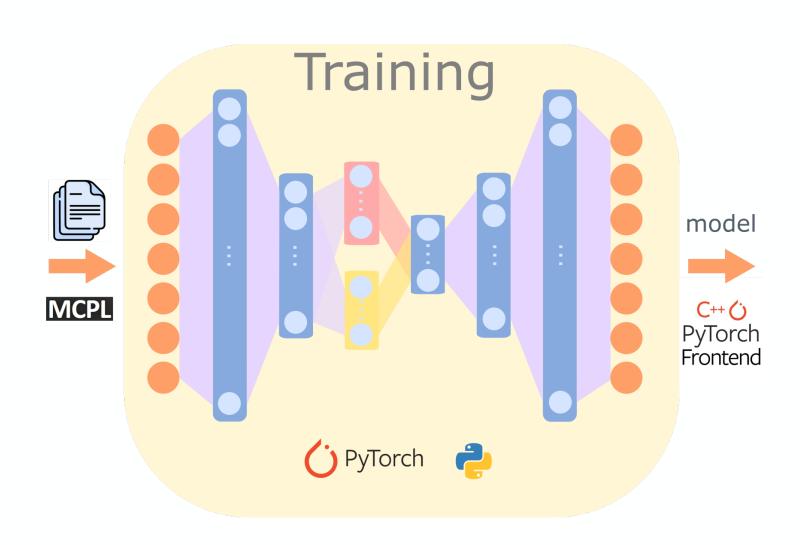


Why can't we generate neutrons?

INTRODUCTION



TRAINING DATA: MCPL FILES

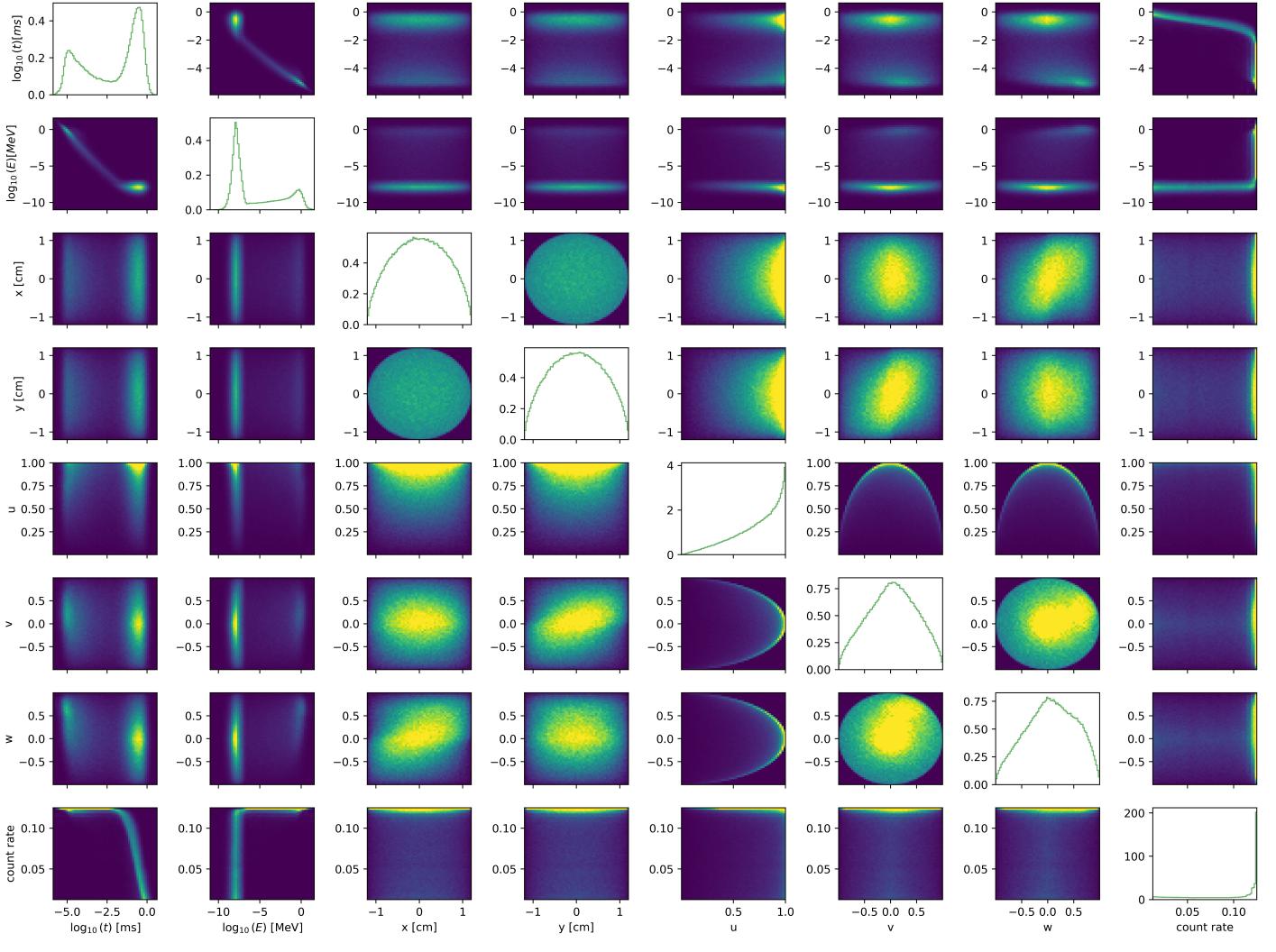


PyTorch DataLoader Variables

\/	[cm]	and	7	[cm]
У		anu	_	[cm]

- u, v, and w
- count rate (weight)
- $\log_{10}(t)$ [ms]
- $\log_{10}(E)$ [MeV]

	pos_y	pos_z	u	v	w	count_rate	TOF	E
0	-1.157290	-0.156233	0.974585	-0.203838	-0.092924	0.124997	0.000059	9.301730e-02
1	-0.675784	0.331821	0.534119	-0.218695	0.816633	0.074287	0.157121	8.421972e-08
2	0.598687	-0.840697	0.647142	0.740285	-0.182169	0.074748	0.156539	8.232719e-08
3	0.775426	-0.258992	0.508785	0.752556	0.418089	0.075199	0.156472	1.423273e-07
4	-0.778382	0.114899	0.702195	-0.399447	-0.589376	0.122384	0.007535	5.222545e-08
676553	-0.711618	-0.400495	0.916834	-0.103239	-0.385690	0.124989	0.000039	8.381045e-03
676554	-0.052427	0.881021	0.818265	0.572754	-0.048949	0.124998	0.000005	2.565348e-01
676555	-0.042421	0.981967	0.545910	-0.667388	0.506533	0.025299	1.222780	2.869063e-09
676556	0.244454	-0.181313	0.743137	-0.051606	0.667146	0.080170	0.105039	2.322999e-08
676557	-1.063570	-0.350045	0.633484	-0.657062	-0.408617	0.032235	0.657213	6.777769e-09
676558 ro	ws × 8 colum	ne						



T. Kittelmann et al. Monte Carlo particle lists: MCPL. Computer Physics Communications, 218, 17-42.

bw=0.05, N=100

bw=0.2, N=100

bw=0.5, N=100

Possible values

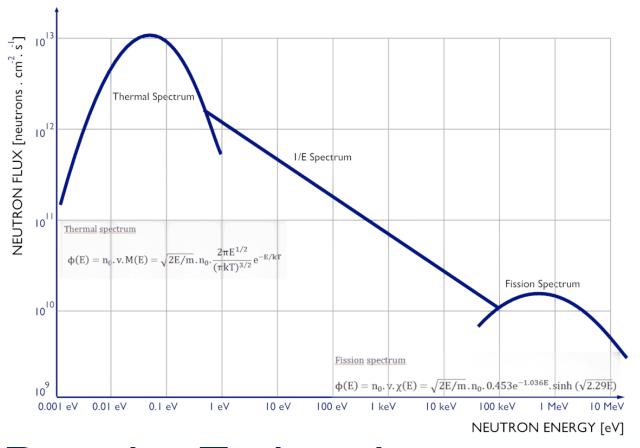
Eveduency 0.5 0.3

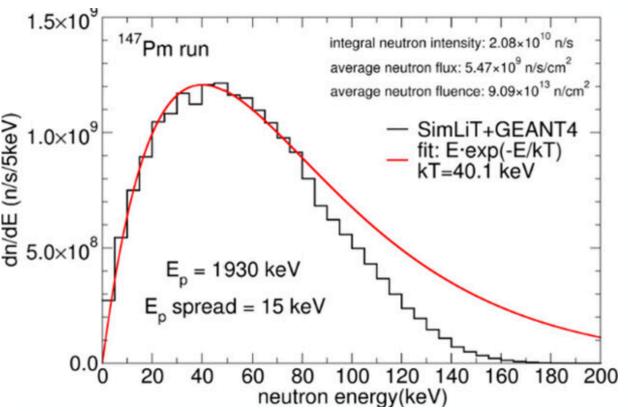
Relative 0.1

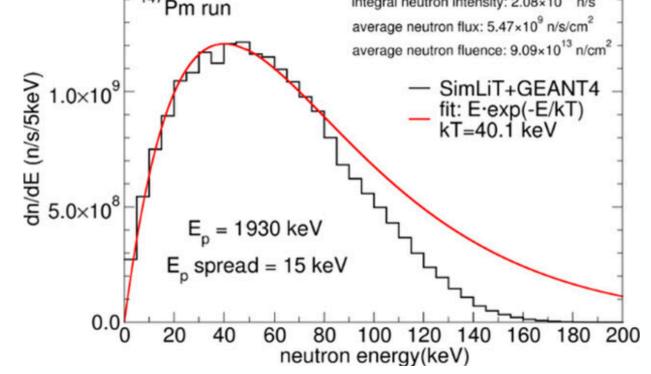
Frequency 8.0

CURRENT APPROACHES TO SOURCE ESTIMATION

Analytical approximation based on theory / fitting to observed data





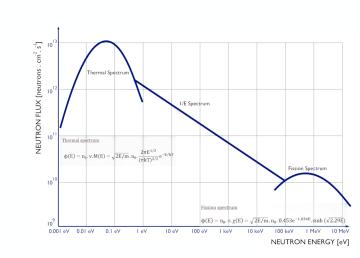


$$\hat{f}(\mathbf{x}) = \hat{f}(x_1, x_2, \dots, x_D) = \sum_{i=1}^{N} w_i \left\{ \prod_{j=1}^{D} \frac{1}{h} K\left(\frac{x_j - (\tilde{p}_i)_j}{h}\right) \right\}$$

Schmidt, N. S. et al. (2022), KDSource, a tool for the generation of Monte Carlo particle sources using kernel density estimation. *Annals of nuclear energy*, 177, 109309.

PROS & CONS

- Analytical approximation based on theory / fitting to observed data
 - Reliable when assumptions are adequate (Theoretical foundation)
 - It is an approximation and assumptions are needed
 - simple and fast for sampling
 - lack features specific to individual cases
 - Fitting parameters are characteristic of the distribution (interpretability)
- Kernel Density Estimation
 - Non-parametric approach, making it adaptable (flexibility)
 - Although, hyper-parameter: Bandwidth and kernel
 - Data-driven, potentially providing a better representation of the distribution
 - Computational cost for high dimensional spaces
 - Fast sampling
 - Data dependency for sampling

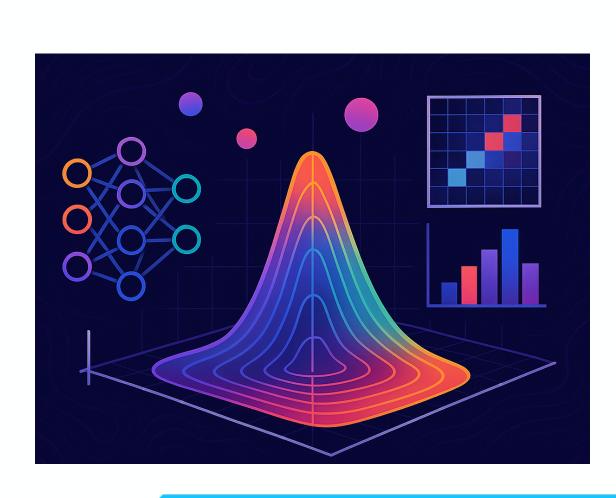


GENERATIVE MODELS

 Objective: Learn the underlying patterns and distributions of a dataset and generate new data points that resemble the original

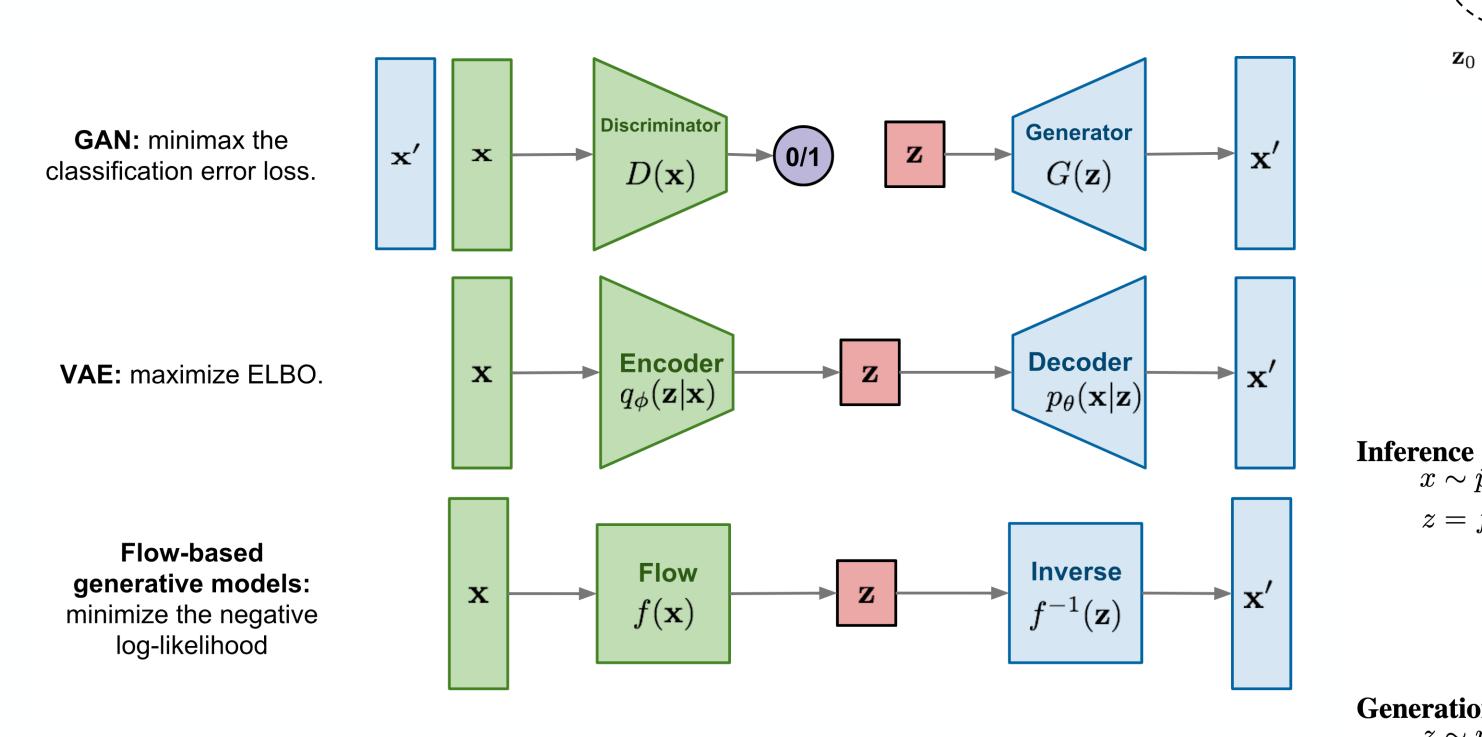
We can use generative models to learn the multivariate phase-space distribution of neutrons from a Monte Carlo Particle List (MCPL file)

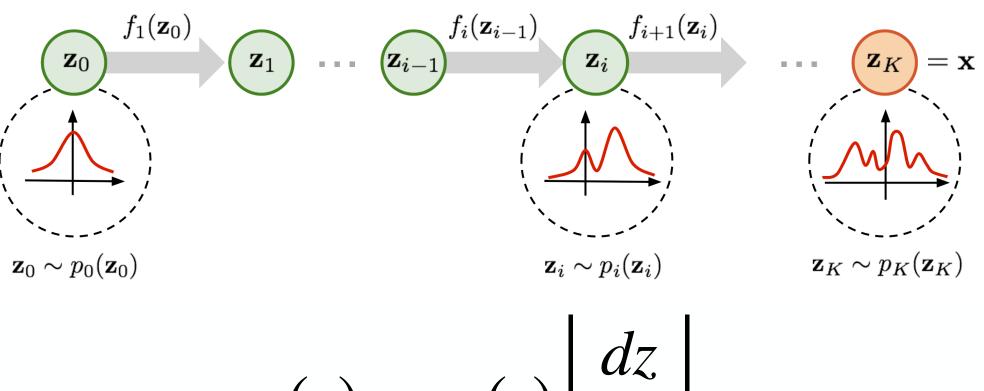
- Easy to generate new neutrons to propagate inside tracing software.
- capable of learning and generating data with complex patterns and structures between phase-space variables! (High fidelity and realism)
- Not limited to specific types of data (Flexibility)
- · Once trained, no need to keep the original dataset used to train it.
- High-computational cost for training
- Large datasets
- Lack of interpretability
- Depending on model size, slow for sampling

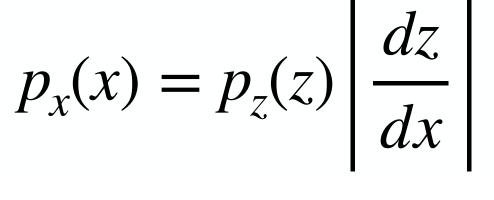


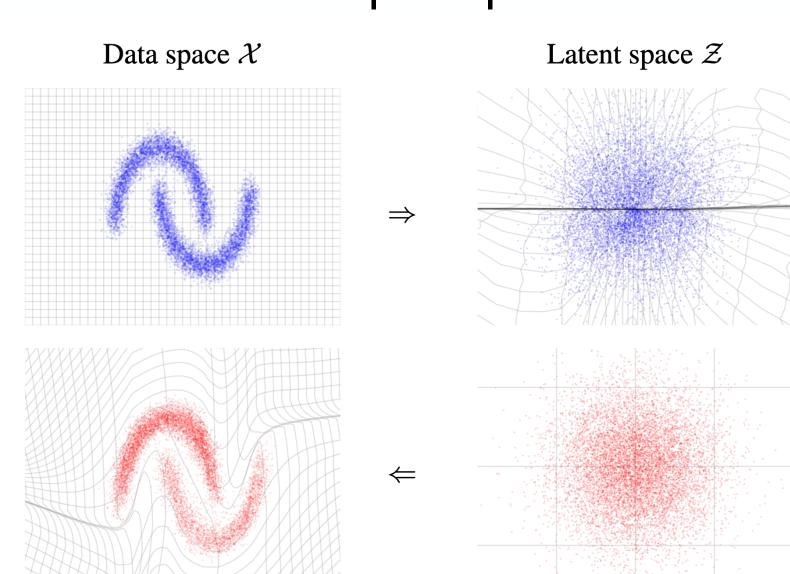
Normalizing Flows

GENERATIVE MODELS









Generation

 $x \sim \hat{p}_X$

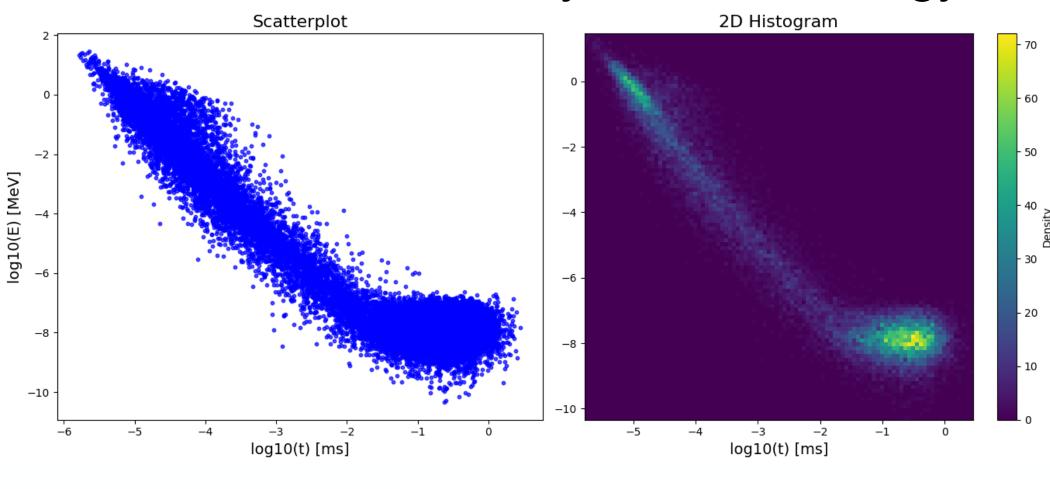
 $z = f\left(x\right)$

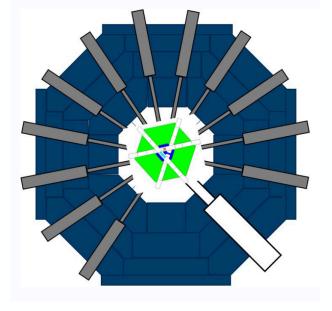
$$z \sim p_Z$$
$$x = f^{-1}(z)$$

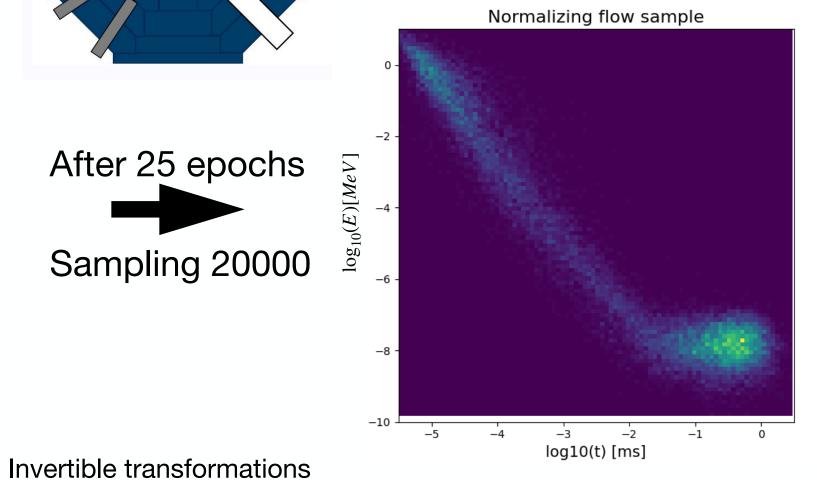
HELMHOLTZAI Artificial Intelligence Cooperation Unit

TOY EXAMPLE ON 2D

20.000 neutrons, only time and energy

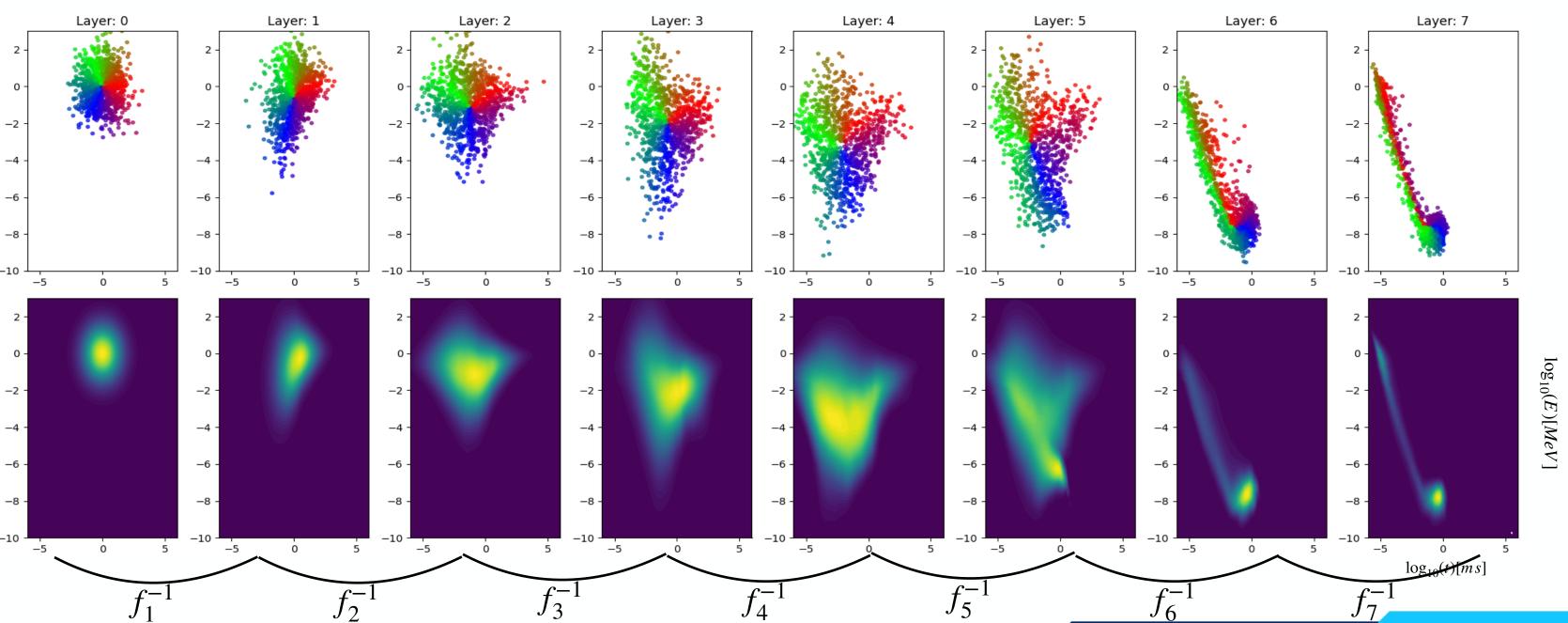








Easy to sample



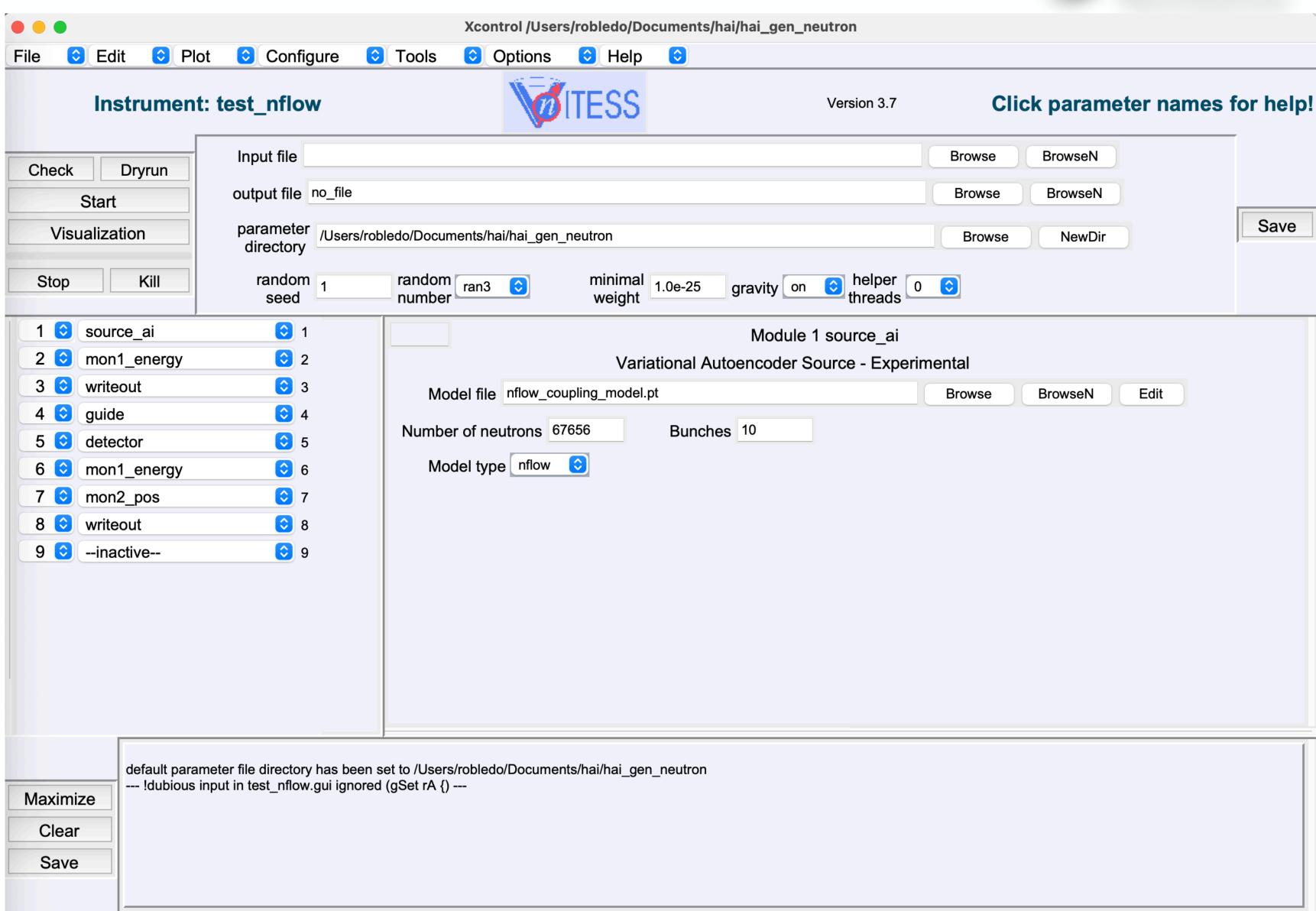
Artificial sample

VITESS

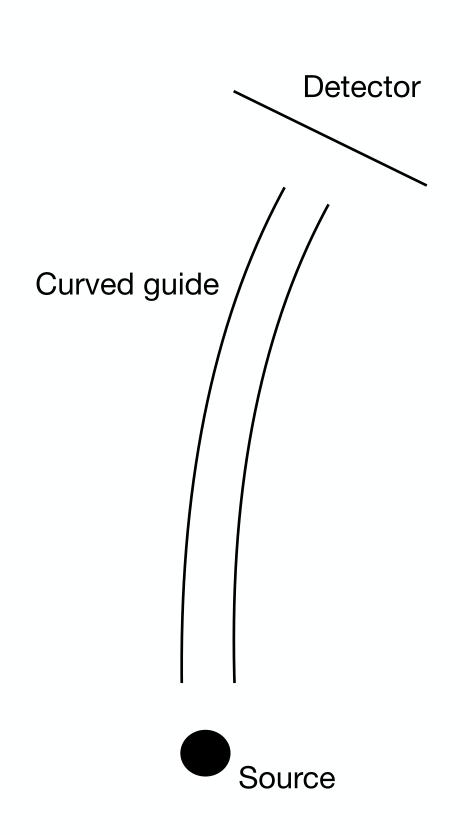
New source_Al module

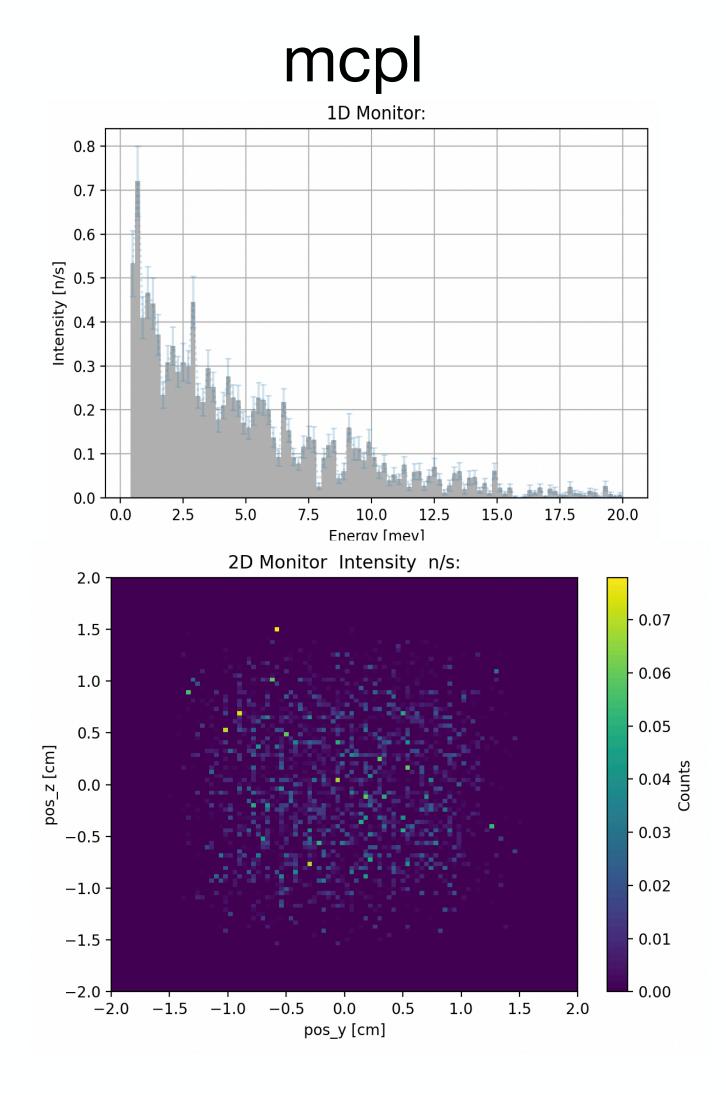
C++ Frontend

Model needs to be jit compiled

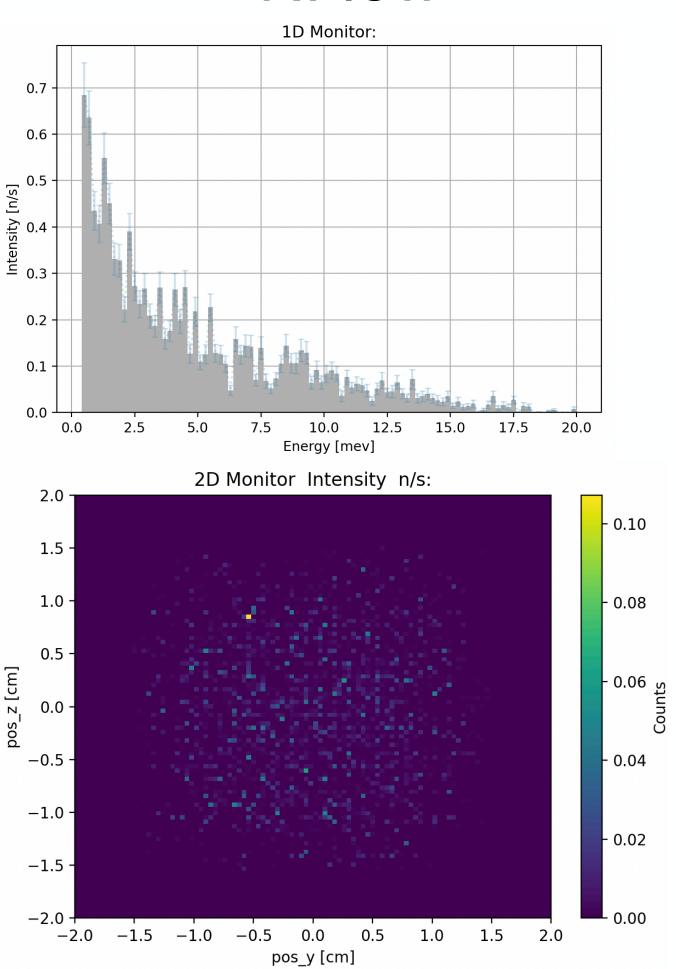


SAMPLING ON VITESS



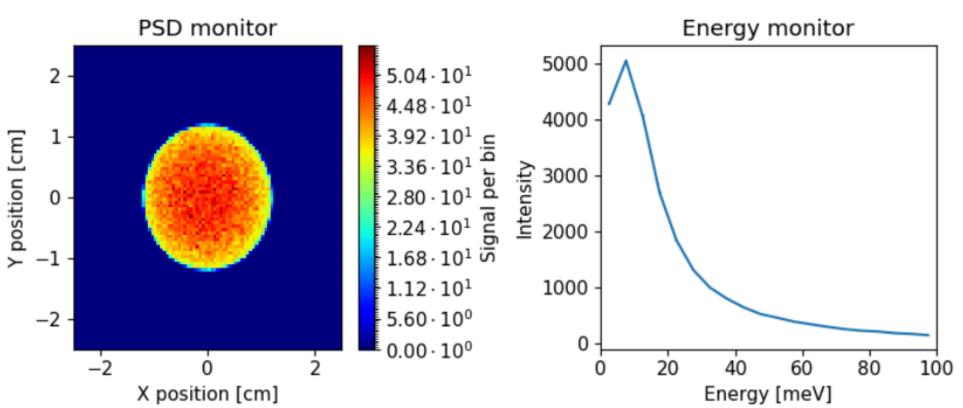


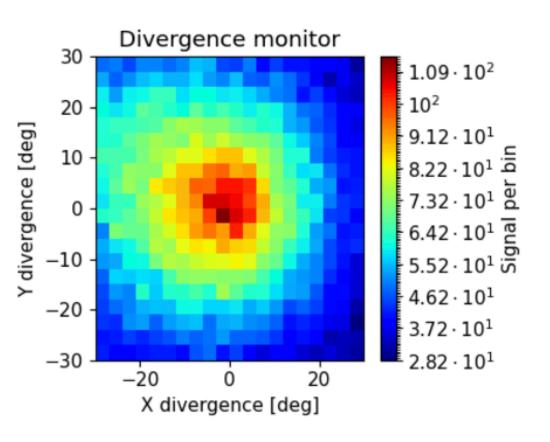
NFlow



MCSTAS

```
import np2mcpl
# Load model
model = torch.load("nflows_model.model", map_location=torch.device('cpu'), weights_only=False)
# sample model
samples = model.sample(int(1e7))
# Transform to adapt to mcpl format if necessary
\bullet \bullet \bullet
# Save data
np2mcpl.save("output", samples)
# Load data
import mcstasscript as ms
instrument = ms.McStas_instr("sample_normalizing_flow")
source = instrument.add_component("source", "MCPL_input")
source.filename = '"output.mcpl.gz"'
PSD = instrument.add_component("PSD", "PSD_monitor")
PSD.set_AT([0, 0, 0.2], RELATIVE=source)
PSD.set_parameters(xwidth=1, yheight = 1, filename='"PSD.dat"')
data = instrument.backengine()
ms.make_sub_plot(data)
```



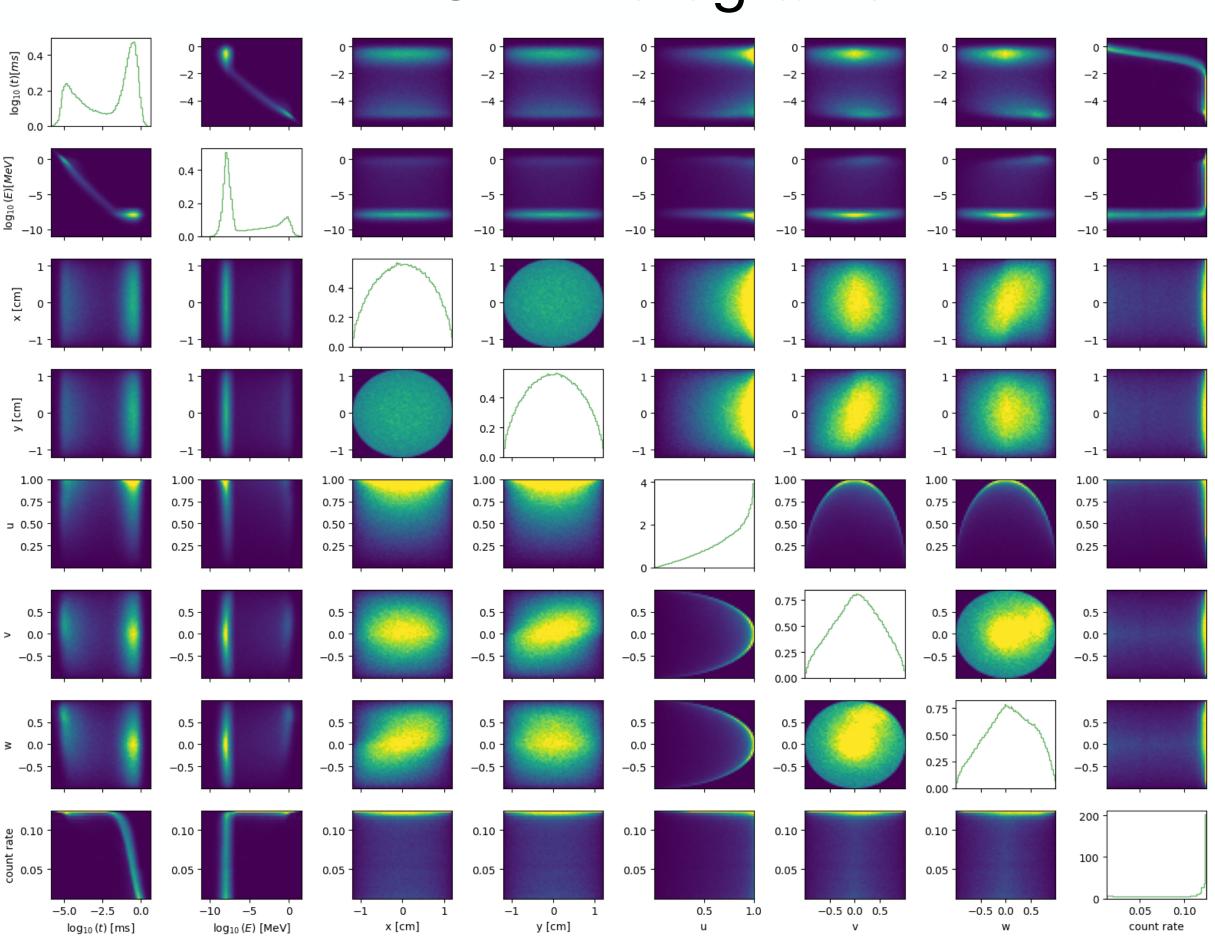


Same procedure can be done in vitess-python

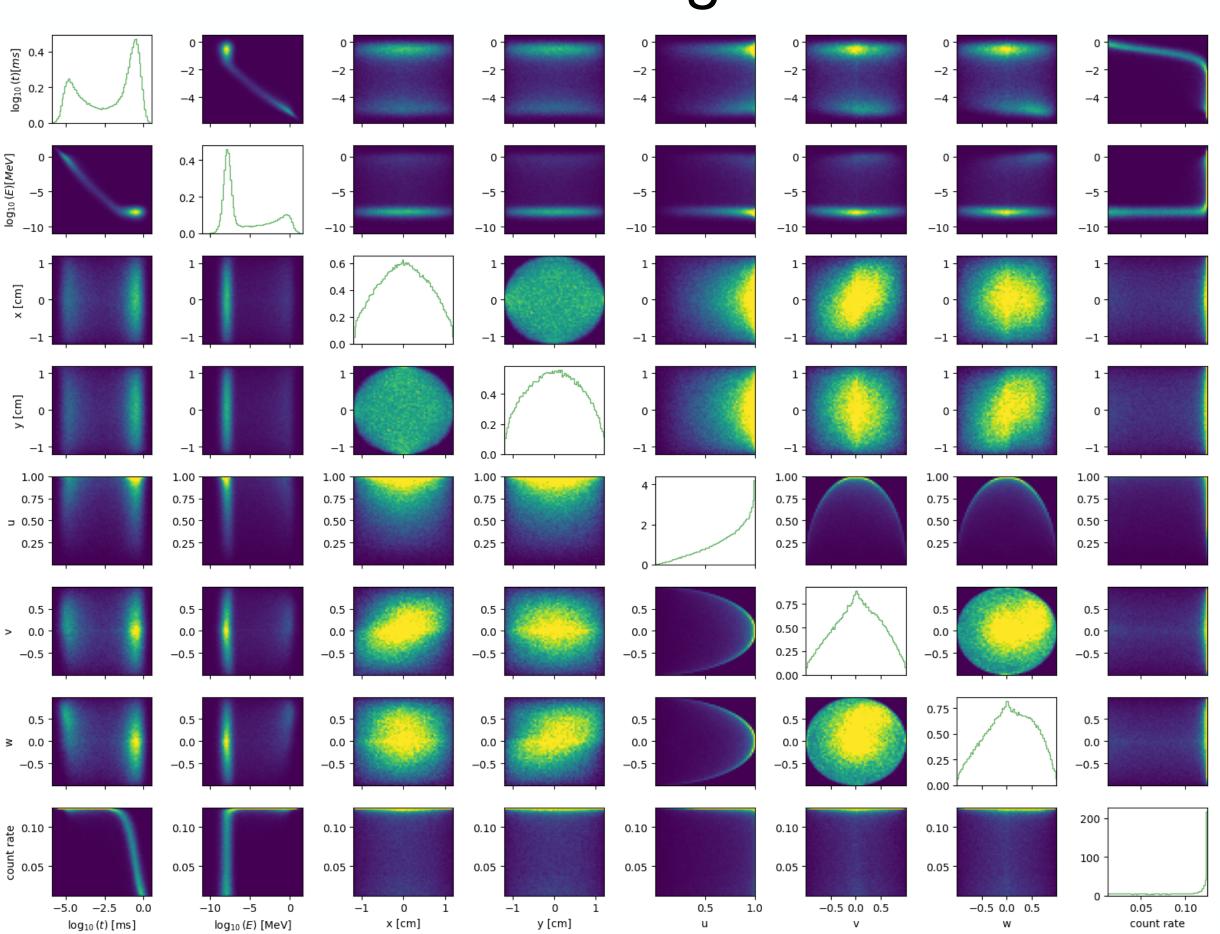
Poster: "Vitess-Python: A Python API for VITESS Instruments" - Fabian Beule

Comparison between NFlow and MCPL

MCPL histograms



NFlow histograms



JÜLICH FORSCHUNGSZENTRUM

0.00100

0.00075

0.00050

0.00025

0.00000

Density

-0.00050

-0.00075

-0.00100

Comparison between NFlow and MCPL

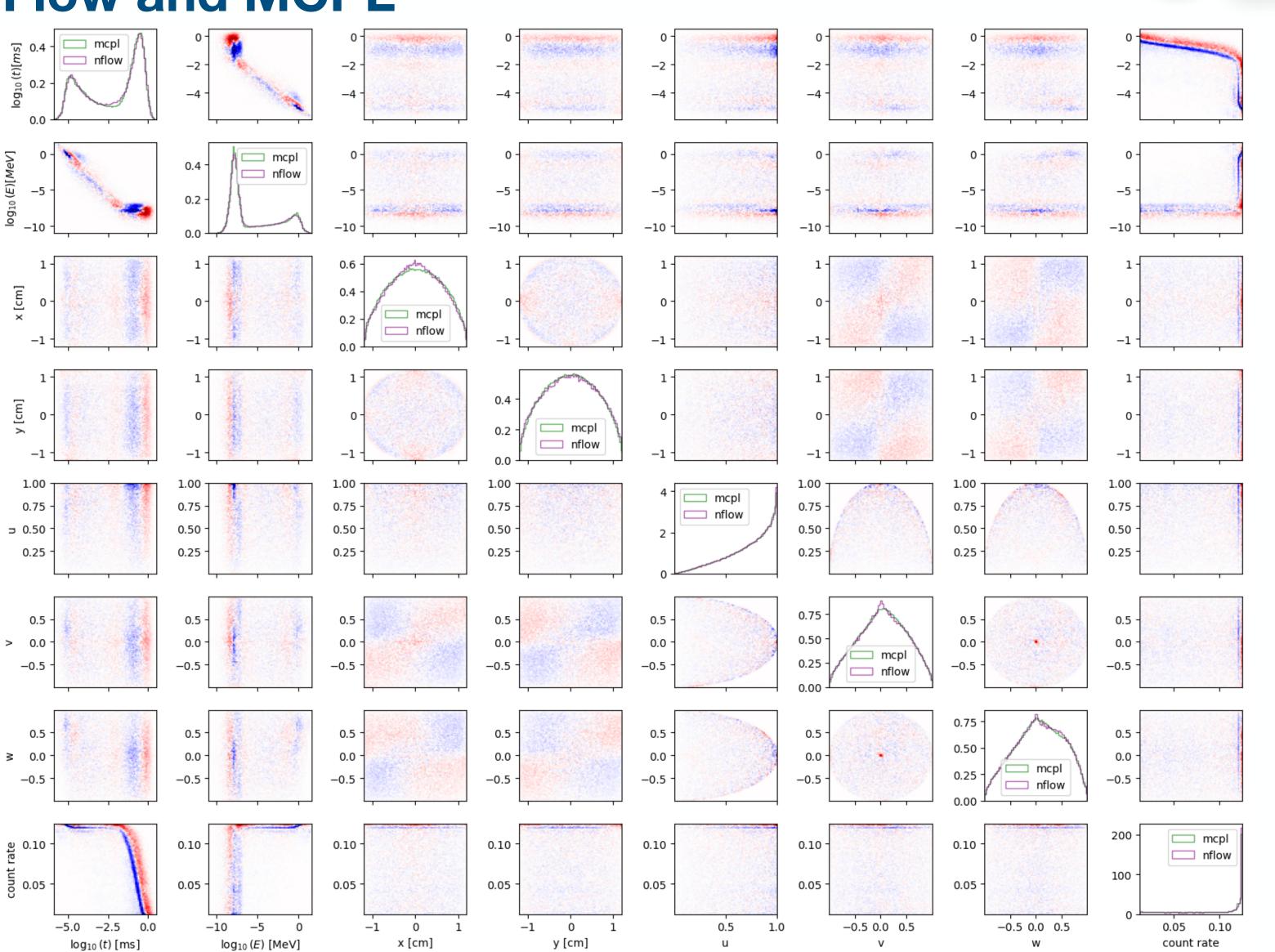
Blue: under-estimate

Red: over-estimate

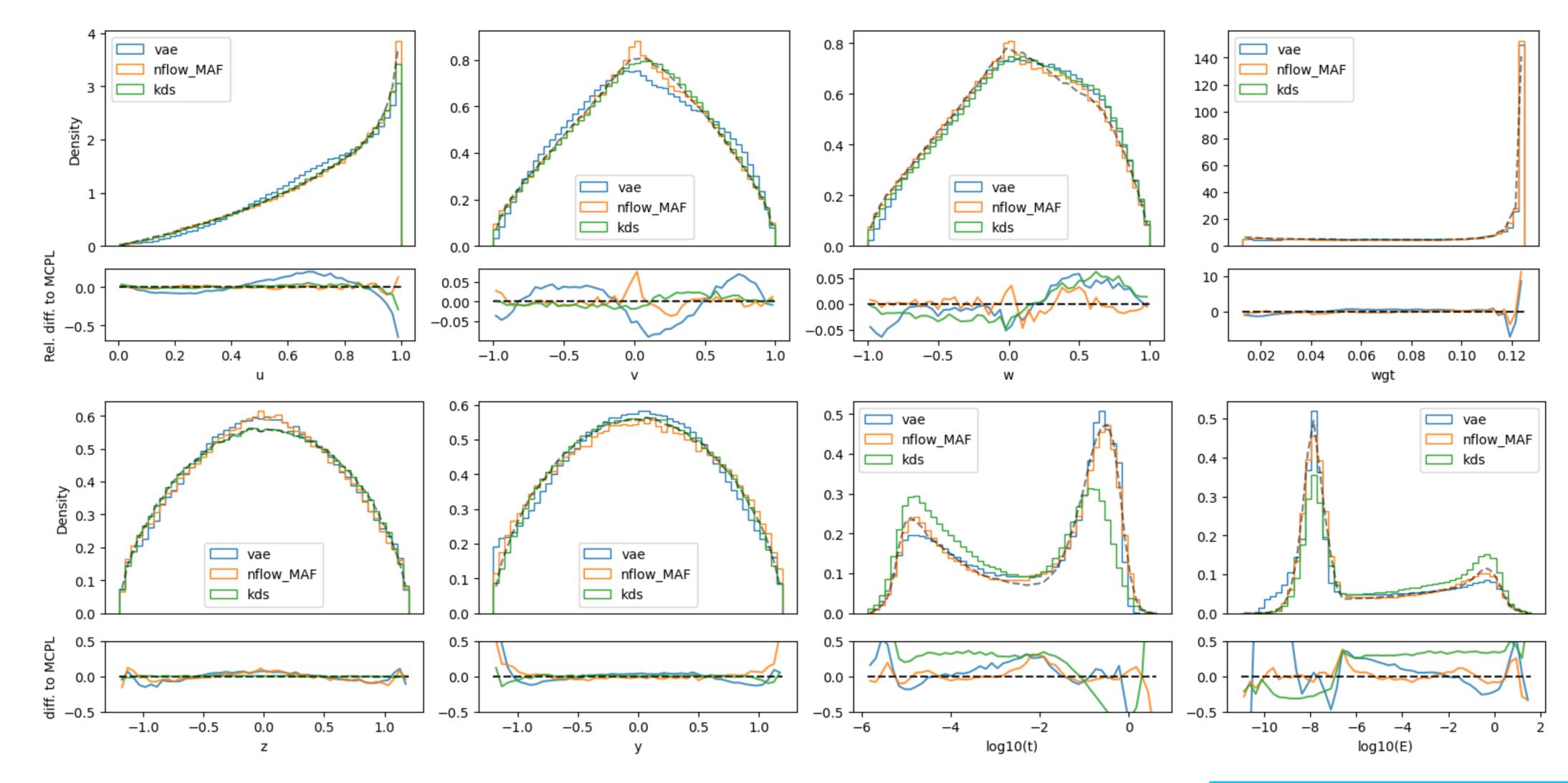
model can be stored in a file consisting of few KB

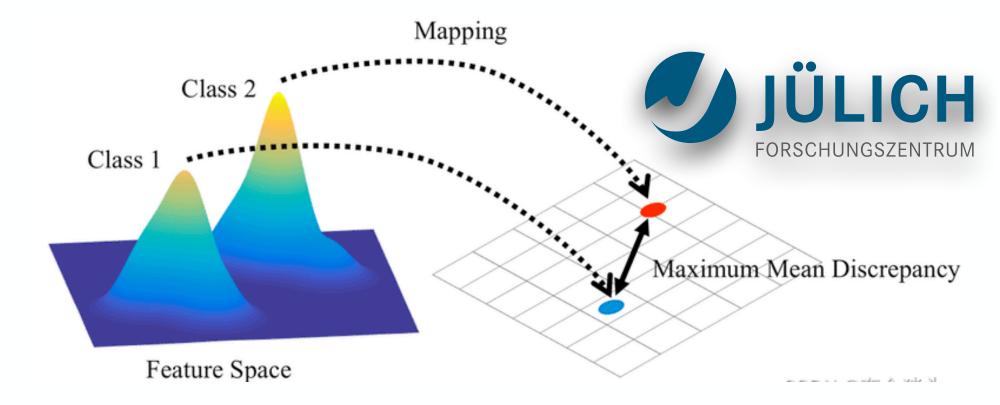
easily loadable through PyTorch API

we can sample from the latent space



COMPARISON BETWEEN MODELS





Statistical measure: Maximum mean discrepancy (MMD)

Determine if two datasets are likely to have been drawn from the same distribution by embedding probability distributions into a Reproducing Kernel Hilbert Space (RKHS) and then calculating the distance between the means of these embeddings.

Model	Average MMD *
MCPL	0.00015 ± 0.00016
MAF NFlow	0.00053 ± 0.00010
Coupling Flow	0.00171 ± 0.00015
VAE	0.00308 ± 0.00017
KDSource	0.08014 ± 0.00143
Uniform	0.15231 ± 0.00149

^{*} sample size = 10000, average over 10 samples

Model	Sampling time / 700.000 n (s)
KDSource	2
VAE	8
NFlow	7

SUMMARY

- Generative models can learn multivariate probability distributions from data
- MCPL files make great training data!
- Normalizing Flows show great potential in learning neutron phase-space variable distributions, but they can estimate poorly if distributions have sharp features.
- These sources can already be used in Vitess and McStas, and are easily extensible to other Monte Carlo software.
- There are multiple architectures of NFs, as well as VAEs and GANs. Exploring which model does best is still an art. Physical constraints can be added inside the loss function.
- Metrics for comparing multivariate distributions should be taken into account for model selection.

