
Jobs Subsystem
SciCatCon 2025

Spencer Bliven, Despina Adamopoulou, Sofya Laskina

Overview

Version 4

▪ NestJS (typescript)

▪ Configure jobs without code changes

▪ Better testing

Version 3

▪ Loopback (javascript)

▪ Hard-coded jobs/actions

▪ Code not following best practices

Jobs in backend v3

Fixed job types:

▪ archive: Indicates that data should be moved to tape storage

▪ retrieve: Indicates that data should be retrieved internally from tape storage

▪ public: Retrieve data to public storage location

Hard-coded actions for events:

▪ Publish message to a Message Broker

▪ Dispatch email following a template

Limitations:

▪ Customization requires rebuilding SciCat images with custom js

▪ Code spread among many locations, files (and site-specific monkey patches)

▪ All dependencies are compiled into the backend, even if unused

Jobs in scicat-backend-next v4

▪ Refactored code to be modular and easily expandable

▪ New DTO and schema

▪ Elevated users can create jobs for others

▪ Flexible authorization logic to support new job types (not necessarily dataset-based)

▪ New job types can be easily added to the system

▪ Actions easily configurable

▪ Validate action, to constrain jobParams and jobResultObject

Configuration – jobConfig.yaml

▪ Defines different types of jobs

▪ Not limited to archive/retrieve/public anymore

▪ Parse configuration file and validate its schema

▪ For each job type, register actions per job operation

▪ Validate actions before starting the job operation

▪ Perform actions after a successful job operation

▪ Use JOB_CONFIGURATION_FILE env variable

Configuration design

▪ jobType: archive, retrieve, public, or custom types

▪ jobOperations: create,update

▪ auth: authorization policy (eg #all), specific user, specific group

▪ actions: send email, call URL, post RabbitMQ message, etc

Authorization

ADMIN_GROUPS • Can create/update/read any job for anyone.
• CANNOT delete jobs!

CREATE_JOB_PRIVILEGED_GROUPS
(Create Jobs admin)

• Can create jobs for anyone.
• In “#datasetX” configurations the

limitations on user of the job still apply.
• Can read any job.

UPDATE_JOB_PRIVILEGED_GROUPS
(Update Jobs admin)

• Can update jobs for anyone.
• Can read any job.

DELETE_JOB_GROUPS • Can delete any job

Permissions

Two levels of permissions are required to create a job: endpoint and instance authorization.

Creating jobs

Unsafe!

Job creation DTO

V3 V4

▪ ownership: ownerUser, ownerGroup

▪ Normal users can create jobs for themselves

{

 “type”: “archive”,

 “emailJobInitiator”: “email@example.com”,

 “jobParams”: {},

 “datasetList”: [{

 “pid”: pid,

 “files”: []

 }]

}

{

 “type”: “archive”,

 “contactEmail”: “email@example.com”,

 “ownerUser”: “owner”,

 “ownerGroup”: “group”,

 “jobParams”: {

 “datasetList”: [{

 “pid”: pid,

 “files”: []

 }]

 }

}

▪ jobParams: datasetList, action-specific

configuration parameters

Backwards Compatibility

{

 “type”: “archive”,

 “emailJobInitiator”: “email@example.com”,

 “jobParams”: {

 “username”: “owner”,

 “ownerGroup”: “group”,

 “param”: param

 },

 “datasetList”: [{

 “pid”: pid,

 “files”: []

 }]

}

V3 V4

{

 “type”: “archive”,

 “contactEmail”: “email@example.com”,

 “ownerUser”: “owner”,

 “ownerGroup”: “group”,

 “jobParams”: {

 “param”: param,

 “datasetList”: [{

 “pid”: pid,

 “files”: []

 }]

 }

}

Actions overview

Implemented actions

Enforce custom constraints on jobParams or jobResultObject for each job type.

Checks the incoming request body (the DTO).

Requires that a list of datasets be included in
jobParams.datasetList. Checks are
applied to each dataset.

URL

Validate

Implemented actions

EMAIL_TYPE=<"smtp"|"ms365">

EMAIL_FROM=<MESSAGE_FROM>

SMTP_HOST=<SMTP_HOST>

SMTP_PORT=<SMTP_PORT>

SMTP_SECURE=<"yes"|"no">

MS365_TENANT_ID=<tenantId>

MS365_CLIENT_ID=<clientId>

MS365_CLIENT_SECRET=<clientSecret>

Email

env variables:

RABBITMQ_ENABLED=yes

RABBITMQ_HOSTNAME=rabbitmq

RABBITMQ_PORT=5672

RABBITMQ_USERNAME=rabbitmq

RABBITMQ_PASSWORD=SECRET_PASS

WORD

RabbitMQ

env variables:

Implemented actions

Switch

Defines which actions are performed based on a condition.
The action itself contains a list of sub-actions that will be
performed conditionally.

Name of a variable to test against

Determines which phases the switch statement runs:
validate | perform | all

One or more
conditions to match
the property
against. Conditions
are tested in order
with no "fall
through" behavior:
match | regex |
schema

Templating

▪ Most actions accept handlebars templates

▪ They get filled in when the action runs

Note: Most variables should

use handlebars "triple-stash"

{{{ var }}} to disable

html escaping

Fun fact:
In YAML, the ampersand (&)
and asterisk (*) are used for
creating and referencing
anchors and aliases,
respectively.

Testing

▪ Integration tests are written for every:

• user type,

• job configuration,

• (optional) dataset permissions.

▪ Tables with tests outcomes available for each of the endpoints

▪ ≈ 400 tests to test authorization and CRUD operations

▪ Unit tests for all actions

Documentation

Developer guide:

https://www.scicatproject.org/documentation/Development/v4.x/backend/

configuration/jobconfig.html

https://www.scicatproject.org/documentation/Development/v4.x/backend/configuration/jobconfig.html
https://www.scicatproject.org/documentation/Development/v4.x/backend/configuration/jobconfig.html

Thank you!

	Slide 1: Jobs Subsystem
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

