Jobs Subsystem

SciCatCon 2025

Spencer Bliven, Despina Adamopoulou, Sofya Laskina

Overview

Version 3 Version 4
Loopback (javascript) NestJS (typescript)
Hard-coded jobs/actions Configure jobs without code changes

Code not following best practices Better testing

Jobs in backend v3

Fixed job types:
archive: Indicates that data should be moved to tape storage

retrieve: Indicates that data should be retrieved internally from tape storage

public: Retrieve data to public storage location
Hard-coded actions for events:
Publish message to a Message Broker
Dispatch email following a template
Limitations:
Customization requires rebuilding SciCat images with custom js

Code spread among many locations, files (and site-specific monkey patches)

All dependencies are compiled into the backend, even if unused

Jobs in scicat-backend-next v4

Refactored code to be modular and easily expandable
New DTO and schema
Elevated users can create jobs for others

Flexible authorization logic to support new job types (not necessarily dataset-based)
New job types can be easily added to the system

Actions easily configurable

Validate action, to constrain jobParams and jobResultObject

Configuration — jobConfig.yaml

Defines different types of jobs

Not limited to archive/retrieve/public anymore

= Parse configuration file and validate its schema

For each job type, register actions per job operation
* Validate actions before starting the job operation
= Perform actions after a successful job operation

= Use JOB_CONFIGURATION_FILE env variable

This represents the recommended job types

The configuration is similar to the hard-coded jobs from v3.

configVersion: recommended

jobs:

- jobType: archive

create:

auth: "#datasetOwner"”

actions:
- actionType: validate
datasets:
"datasetlifecycle.archivable™:

const: true

update:

auth: "archivemanager"

- jobType: retrieve
create:
auth: "#datasetAccess”
actions:
- actionType: validate
datasets:
"datasetlifecycle.retrievable":
const: true
update:
auth: "archivemanager”
- jobType: public
create:
auth: "#datasetPublic”
actions:
- actionType: validate
datasets:
isPublished:
const: true
update:

auth: "archivemanager"

Configuration design

jobType: archive, retrieve, public, or custom types
jobOperations: create, update
auth: authorization policy (eg #all), specific user, specific group

actions: send email, call URL, post RabbitMQ message, etc

Authorization

ADMIN_GROUPS

Can create/update/read any job for anyone.
CANNOT delete jobs!

CREATE_JOB_PRIVILEGED_GROUPS
(Create Jobs admin)

Can create jobs for anyone.

In “#datasetX” configurations the
limitations on user of the job still apply.
Can read any job.

UPDATE_JOB_PRIVILEGED_GROUPS
(Update Jobs admin)

Can update jobs for anyone.
Can read any job.

DELETE_JOB_GROUPS

Can delete any job

Permissions

#authenticated

more restrictive >»
#dataset #dataset
Acces Owner
more restrictive >»

Two levels of permissions are required to create a job: endpoint and instance authorization.

Creating jobs

Job Create

Authorization

#all

#datasetFPublic

Fauthenticated

#dalasetidccess

H#datasetOwner

@GROUP

USER

#jobAdmin

Endpoint
Authentication

Translation

#all

#all

Huser

#all

#all

#all

#all

#all

Endpoint Authentication
Description

any user can access this endpoint,
both anonymous and authenticated

any user can access this endpoint,
both anonymous and authenticated

any valid users can access the
endpoint, independently from their
groups

any user can access this endpoint,
both anonymous and authenticated

any user can access this endpoint,
both anonymous and authenticated

any user can access this endpoint,
both anonymous and authenticated

any user can access this endpoint,
both anonymous and authenticated

any user can access this endpoint,
both anonymous and authenticated

Instance
Authentication

Translation

#all

#datasetPublic

#user

#datasetAccess

#datasetOwner

GROUP

USER

#obAdmin

Instance Authentication Description

Any user can create this instance of the job

Unsafe!

the job instance will be created only if all the datasets listed are
public

any valid users can create this instance of the job

the job instance will be created only if the specified user group or
otherwise any of the user's groups has access to all the datasets
listed

the job instance will be created only if the specified user group or
otherwise any of the user's groups is part of all the datasets' owner

group

the job instance will be created only if the user belongs to the group
specified

the job instance can be created only by the user indicated

the job instance can be created by users of ADMIN_GROUPS and
CREATE_JOB PRIVILEGED only

Job creation DTO

V3

“type”’: “archive”,

“emailJoblnitiator

“jobParams”: {},

“datasetList”: [{

1]

“pid”: pid,
“files”: []

email@example.com”,

= ownership: ownerUser, ownerGroup

" Normal users can create jobs for themselves
V4

“type”’: “archive”,
“contactEmail”’: “email@example.com”,

“ownerUser”: “owner’’,
“ownerGroup”: “group”,
“jobParams’: {
“datasetList”: [{
“pid”: pid,
“files”: []
1]

} " jobParams: datasetlist, action-specific
} configuration parameters

Backwards Compatibility

V3 V4
{ {

“type”: “archive”,

“type”’: “archive”,

“emailJoblnitiator”: “email@example.com”, ——— “contactEmail”: “email@example.com”,

“jobParams”: {

’ —> “ownerUser”: “owner”,

 > “ownerGroup”: “group”,

“jobParams’: {

“‘username”: “owner’’,
39, K¢

“ownerGroup”: “group”,

“param”: param

—> “param’”: param,

b “datasetList”: [{
“datasetList”: [{ ’ “pid”: pid
pid™: pid, “files”: []

“files”: []
1])

1]

Actions overview

&)

Create new Job
(POST /jobs)

@

Y4

Email

RabbitMQ message

o

Job statusUpdate
(PATCH /jobs/:id)

Y

Z

Legend

Operation

Action

Archival

Archive data

Implemented actions

URL

url

http://localhost:3000/api/v3/health?jobid={{{request.id}}}
GET

application/json

"Bearer {{{env.ARCHIVER_AUTH_TOKENZ}}}",
"{{{Jsonify job}}}

Validate

Enforce custom constraints on jobParams or jobResultObject for each job type.

Ualidate/v Checks the incoming request body (the DTO).

cpath>: <typecheck> Requires that a list of datasets be included in
/ jobParams.datasetList. Checks are

cpath>: <typechecks applied to each dataset.

Implemented actions

Email

- actionType: email
to: "{{{job.contactEmail}}}"

from: "sender@example.com",

subject: "[SciCat] Your {{{job.type}}} job was submitted successfully."

bodyTemplateFile: "path/to/job-template-file.html"

env variables:

EMAIL TYPE=<"smtp"|"ms365">

EMAIL FROM=<MESSAGE FROM>

SMTP_ HOST=<SMTP_HOST>

SMTP PORT=<SMTP_PORT>

SMTP SECURE=<"yes"|'"no">

MS365 TENANT ID=<tenantId>

MS365 CLIENT ID=<clientId>

MS365 CLIENT SECRET=<clientSecret>

RabbitMQ

- actionType: rabbitmg
exchange: jobs.write
key: jobqueue

queue: client.jobs.write

env variables:

RABBITMQ ENABLED=yes

RABBITMQ HOSTNAME=rabbitmqg
RABBITMQ PORT=5672

RABBITMQ USERNAME=rabbitmqgq
RABBITMQ PASSWORD=SECRET PASS
WORD

Implemented actions

- actionType: switch

: validate | perform | all

property: some.property

cases:
- match: exact ;;I:;§;;;ZE§-§§“‘ﬁ>

ctions: [...]
- regex: [“regex$/i
ctions: [...]

- schema: {JSON schema}
ctions: [...]

- # default
ctions: [...]

Defines which actions are performed based on a condition.
The action itself contains a list of sub-actions that will be
performed conditionally.

Determines which phases the switch statement runs:
validate | perform | all

> Name of a variable to test against

- actionType: switch

One or more et
conditions to match S
the property

against. Conditions R
are tested in order - actionT
Wlth no "fa” to: {{{job.contactEmail}}}

through" bEhaVIOr: bodyTemplateFile: retrieve-success.html
matCh I regeX I - actions:

schema - actionType: email
to: {{{job.contactEmail}}}

job.statusCode

- match: finishedSuccessful

ype: email

bject: "[SciCat] Your {{{job.type}}} job was successfull”

bject: "[SciCat] Your {{{job.type}}} job has state {{{job.statusCode}}}"

bodyTemplateFile: retrieve-failure.html

Templating

* Most actions accept handlebars templates

They get filled in when the action runs

Fun fact:

In YAML, the ampersand (&)
and asterisk (*) are used for
creating and referencing
anchors and aliases,
respectively.

Top-level

variable

request

job

datasets

env

Note: Most variables should
use handlebars "triple-stash"
{{{ var }}} todisable
html escaping

Type Examples

CreatelobDto

{{{request.type}}}
or

{{{request.jobParams}}}
UpdatelobDto
JobClass {{{job.id}}}

{{#each datasets}}{{{pid}}}
DatasetClass|[]

{{/each}}

object {{{env.SECRET_TOKEN}}}

Testing

Integration tests are written for every:

user type,

job configuration,

(optional) dataset permissions.
Tables with tests outcomes available for each of the endpoints
= 400 tests to test authorization and CRUD operations

Unit tests for all actions

Documentation

Developer guide:
https://www.scicatproject.org/documentation/Development/v4.x/backend/

configuration/jobconfig.html

https://www.scicatproject.org/documentation/Development/v4.x/backend/configuration/jobconfig.html
https://www.scicatproject.org/documentation/Development/v4.x/backend/configuration/jobconfig.html

Thank you!

	Slide 1: Jobs Subsystem
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

