

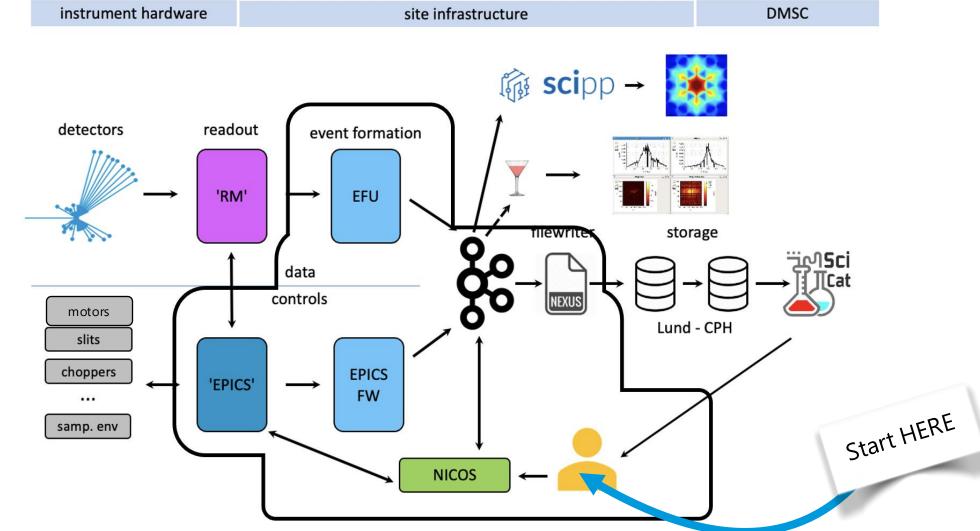
EUROPEAN SPALLATION SOURCE

ECDC in the journey to getting the instruments operational.

Science and Technology Advisory Panels (STAPs)
October 2025

VINCENT HARDION
ON BEHALF OF ECDC++

Agenda



- 1. ECDC System
- 2. Commissioning Progress
- 3. Data Collection and System Maturity
- 4. Firmware and Hardware Collaboration
- 5. Experiment Control and Integration
- 6. Sample Environment
- 7. Organisational Updates
- 8. Risks and Outlook

1. System Definition

Complete ECDC delivery package

ECDC Landscape

TECH GROUPS AND SAMPLE ENVIRONMENT

FIRMWARE

DETECTOR

Torbjörn Grahm Roy Andersson Ulf Tisting

Detector group: Dorothea Pfeiffer

Fabio dos Santos Alves

Joseph Hindmarsh

DATA COLLECTION

Instrument Staff

Morten Jagd Christensen

Tibor Bukovics

George ONeill

André Costa

Mads Ipsen

Milosz Nowak

Michael Christiansen

INTEGRATED CONTROL

Nicklas Holmberg

Andre de Oliveira Favoto

Caissa Roque

Dahyeon Kim

Douglas Araujo

Janne Nyman

Jim Larsson

Julia Carvalho

Marco Filho

EXPERIMENT CONTROL

Jonas Petersson

Torsten Bögershausen

Lais Pessine Do Carmo

Line Møller

George Kontogiorgos

Hanno Pery (1st dec)

Renee Helfert (3y)

<u>Dimitrios Arnellos (3y)</u>

Temporary/Consultant

IDS/SCIPP/DRAM

INFRA

DST

5

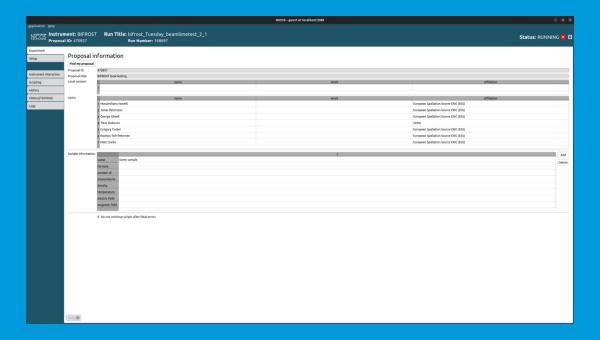
2. Commissioning Progress

- Focused on SAR of TBL, BiFROST, and LOKI.
 - Now DREAM, ODIN, ESTIA, NMX
 - Close collaboration with instrument staff to meet SAR requirements.
- Validated ECDC architecture for early operations.
- Issues tracked in Jira; SAR-priority issues resolved first.
- Major case: beam monitor integration crossgroup effort including hardware, firmware, software, and vendor coordination.

Two Dimensional Filter Statistics: ECDC NIT										
To be resolved before	IN PROGRESS	RESOLVED	IN REVIEW	TO DO	T:					
SRR	0	2	1	8	11					
TG5/ SAR	10	5	11	12	38					
TG6/ ORR	5	6	3	17	31					
Total Unique Issues:	15	13	15	37	80					
Grouped by: Status	Status Showing 3 of 3 statistic									

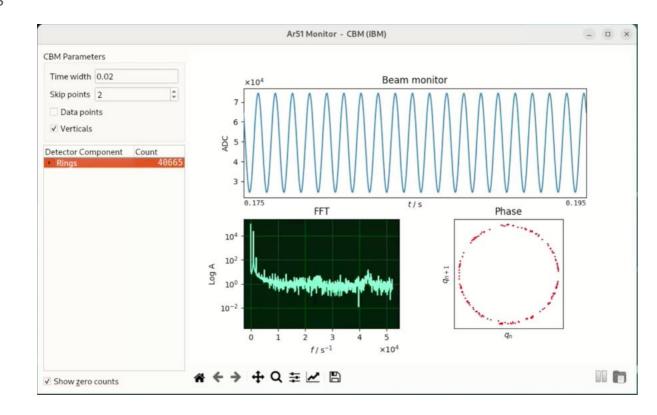
- Challenges:
 - Software last in line
- Effort shared between hot commissioning, cold commissioning and T2/3

ECDC - Installation and Testing


Test of NICOS installation of the LOKI workstation.

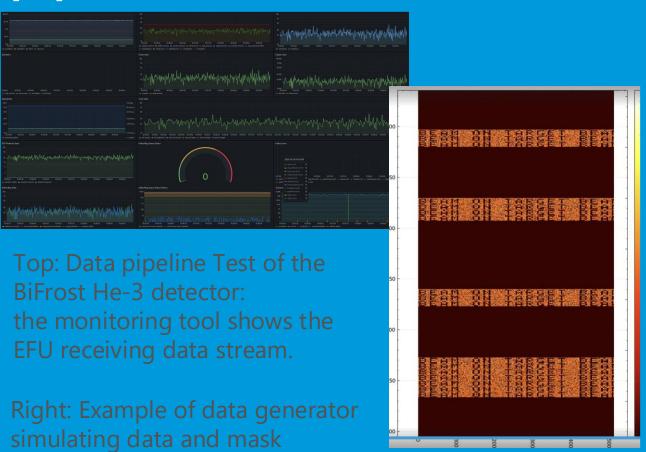
Test of NICOS installation of the TBL workstation.

Service Test

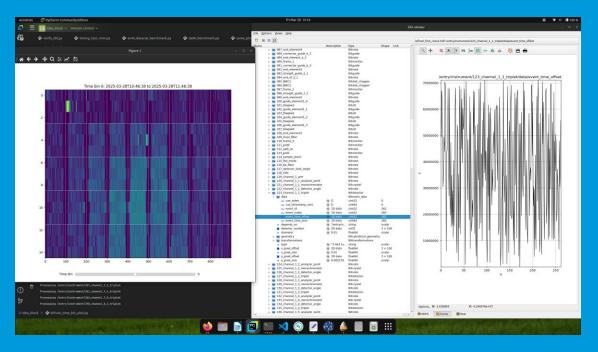


Service Test at the BiFrost Instrument: the "local testing" proposal number 470857

3. Data Collection and System Maturity



- The detector and metadata pipeline met expectations during integrated tests.
- Event Formation Unit validated across many type of detectors.
- Specific cases tested successfully:
 - EPICS AreaDetector to Kafka streaming tested successfully (ORCA & nGem).
 - TimePix3 achieved its first full NeXus data chain and time-of-arrival validation.
- Produce several Diagnostic tools
- Presence during commissioning for on-site support
- Challenges:
 - Testing geometry
- Testing timestamping without synched neutron source



Data pipeline test

Data workflow test

Data workflow Test of the BiFrost detector: the detector data are recorded in a NeXus file (Silx viewer)

4. Hardware and Firmware Integration

- Strong collaboration with ICS WP12: EPICS integration
 - o Handed over motion, piezo, hexapod, ...
- Improved reliability and performance of detector integration.
 - Hiring of 3 FPGA consultant as team leader + tester
 - Collaboration with Detector, FPGA and ICS teams ensured validation of readout modules and timing systems.
- Joint effort clarified interfaces from firmware to high-level data handling
- Established baseline for future high-throughput instruments i.e SONDE

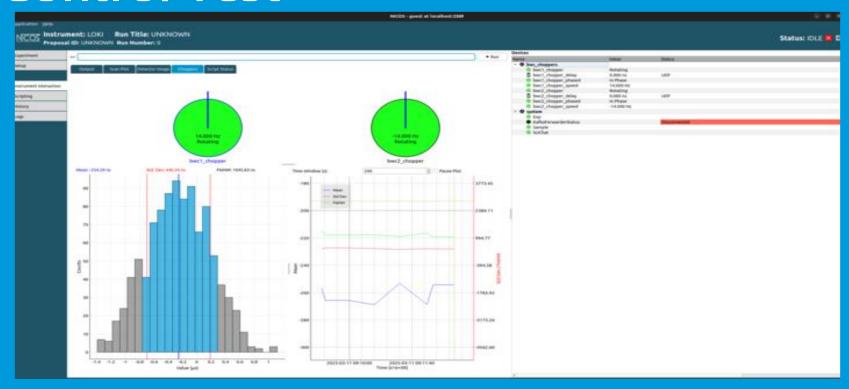
Arch	ID	FENor RMM variants	Firmware variants	BIFROST	VESPA	LOKI	CSPEC	MIRACLES	DREAM	MAGIC	HEIMDAL	ESTIA	TBL He3	TBL MB	FREIA	T-REX	NMAX	"AMOR" PSI	SKADI	ODIN	BEER
0	0 0	RMM (Readout Master Module)	10.0															1.0.0			
0 0	Maria (Meadodt Master Moddie)	2.0.0	2.0.3		2.0.0			2.03			2.0.3	2.0.0	2.0.3						2.0.0		
1	1	CAEN R5560	v.ISIS																		
'	2		v.ILL																		
2	3 -9	CDT CDRE w. CIPIX sub AS20B	v.CDRE x 7 var																		
	10	Gd gem – VMM Hybrid ESS Ass	V.XXX																		
<_3	11	Multi-Blade – VMM + Ass KC705	v.yyy																		>
3	12 N	Multi-Blade – VMM Hybrid Mini Ass	v.xxx_NMX																		
			v.xxx_MB									1.1									
4	14	IDEAS	v.Zzz (external)																		
5	15	ZCU111 Zynq US+ RFSoC	V.ZZZ																		
6	16	NI DAQ14125 (8ch)	v.1.0.0	1.04																	
7	17	I-BM, CDT CDRE	v.1.20	1.02																	
8	18	CDT CASCADE-GEM DAQ	V.XXX																		
9	19	NI 128D DAQ (Gemini)	V.XXX																		
10	20	CAEEN R550 BM Firmware	V.XXXXX																		

Firmware status in 2025-08-20

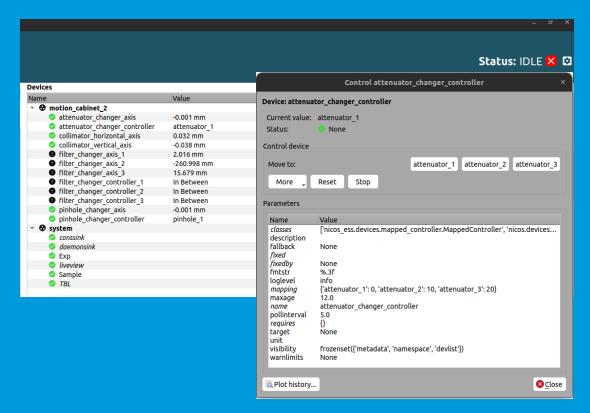
Challenges:

- Highly dependent on information/resource from 3rd parties
- o SSO

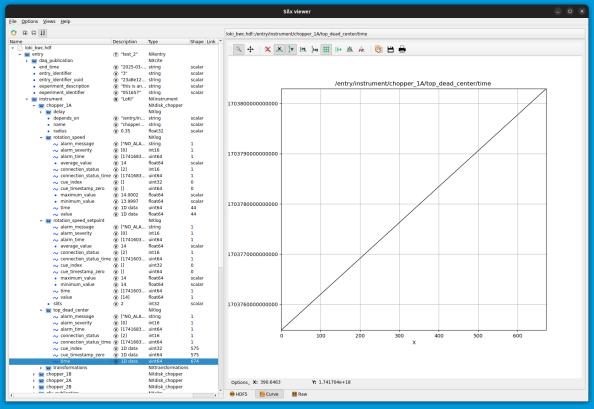
5. Experiment Control and Integration



- •NICOS/EPICS interface refined for motion, chopper, and sample environment devices along the way.
- •Closer collaboration with ICS, DMSC, and Detector, MCA & Chopper Groups for integration and diagnostics.
- •Focus on unified operator view for control, data collection, and monitoring, including live view.
- •Work ongoing to harmonize GUIs and improve usability.
- Challenges:
 - High level control for User Operation
 - Meta-data and high accuracy timestamping


Control Test

Control Test of the LOKI Chopper
User Interface


Advanced Control test

Advanced Control Test of the TBL attenuator: the GUI proposed 3 pre-defined positions.

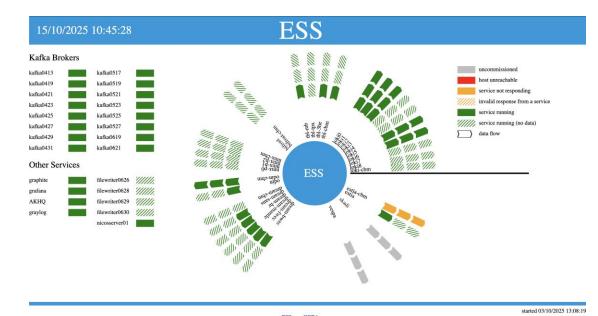
Experiment Control Flow

Experiment Control Flow Test of the LOKI Chopper: The chopper meta-data are stored in NeXus file.

6. Sample Environment Integration

- •Re-starting coordination with SE group to standardize interfaces and testing.
- •Integration maturity and complexity have impacted cold commissioning.
 - basic control in Cold Commissioning
- Mitigation plan:
- investigating a full inventory and readiness assessment Integration ECDC,
- o incremental testing,
- o early validation.

Challenges:


- diversity and readiness of sample environment.
- o technical stack

7. Organisation and Infrastructure

- Two new members joined; senior developer for neutron science to start soon.
- On-call framework initiated for NSS technology groups.
- Automated deployment enhanced with Ansible and CI/CD pipelines => Step toward better configuration management
- Centralized dashboards deployed for EFU and Kafka services i.e https://ecdcpos.esss.dk/ess
- Current challenges on the complexity of IT landscape impacting support response.

ime to check status from all services: 0.770 s

Auto-refres

Outlook

- Focus on being ready for hot commissioning.
- Extend test workflows to Tranche 2 and 3 instruments.
- Improve user experience.
- Strengthen automation and diagnostic infrastructure.
- Continue to foster collaboration across divisions.
- → ECDC is eager to see the first neutron events displayed through its systems.