

Instrument Data Scientists

Gregory S. Tucker

Data Management and Scientific Computing Division, ESS

2025-09-03

Science meets DMSC

Instrument Data Scientists

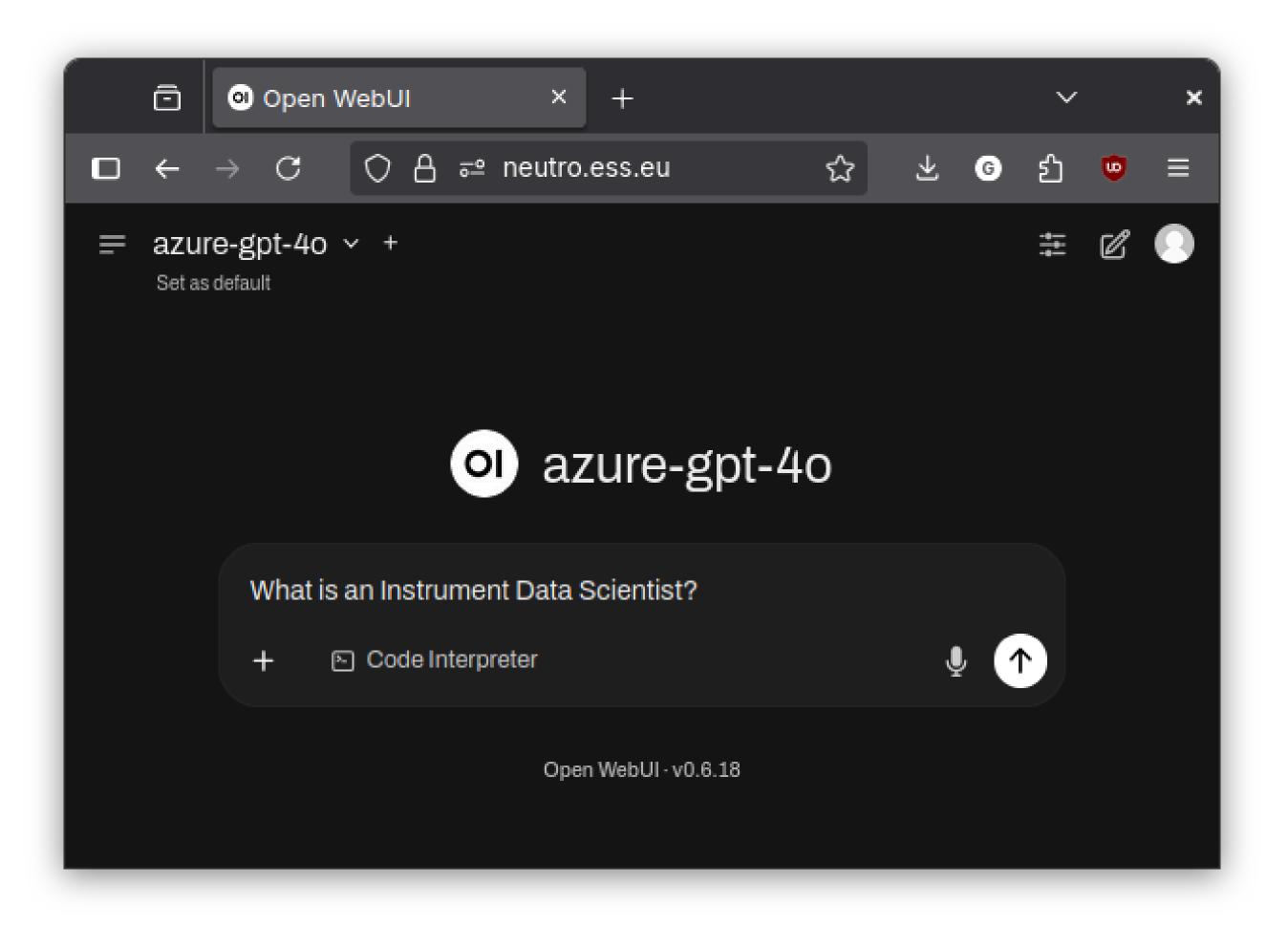
Gregory S. Tucker

Data Management and Scientific Computing Division, ESS

2025-09-03

Science meets DMSC

Overview


- What is an Instrument Data Scientist?
- Who are the Instrument Data Scientists?
- What do the Instrument Data Scientists know?
- How does one contact an Instrument Data Scientist?

What is an Instrument Data Scientist (IDS)?

What is an Instrument Data Scientist (IDS)?

Neutro interpretation of the IDS R2A2

- Bridge instrument teams, users, and the **Data Management and Software Centre** (DMSC)
- Provide expertise in scientific computing solutions
 - for neutron scattering experiments
 - and instrument-specific workflows
- Drive efficient and sustainable delivery of data processing pipelines and user-facing tools

Key Responsibilities of an IDS

Interfacing and Collaboration

- Primary liaison between instrument teams, technology groups, and the DMSC.
- Actively work with users and teams to address their scientific computing needs.

Developing Solutions

- Oversee the development and maintenance of data processing pipelines.
- Contribute to **open-source software** projects.
- Provide training on the DMSC software suite to instrument teams and users.

Knowledge Sharing

Collaborate with other IDSs and DMSC teams to create sustainable solutions.

Expertise and Advocacy

Scientific and Technical Excellence

- Represent DMSC at STAP meetings and provide expert advice on data and scientific computing.
- Conduct research, publish results, and present findings at conferences and workshops.
- Maintain accurate and up-to-date instrument models.

User Advocacy

- Assist users in analyzing, processing, and simulating experiment data.
- Actively advocate for the needs of the user community.

Why Instrument Data Scientists matter to ESS

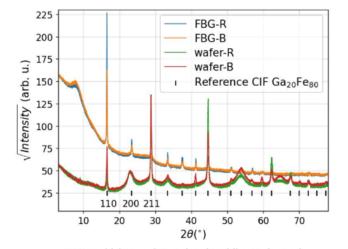
Impact on ESS mission

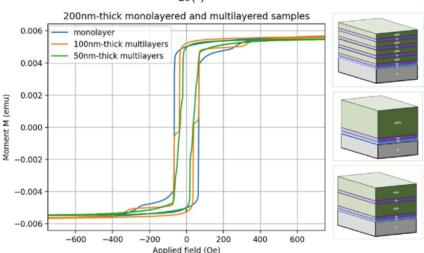
- IDSs are critical to delivering user-friendly, robust scientific computing solutions at ESS.
- Ensure neutron scattering research is equipped with state-of-the-art computing tools for **data modeling**, **simulation**, **and processing**.
- Foster a culture of collaboration, sustainability, and open science.

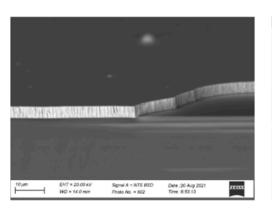
Shaping the future of ESS

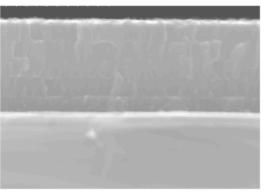
- IDSs play a pivotal role in transforming data workflows into practical solutions for world-class research.
- By enabling **seamless data pipelines**, IDSs contribute to making ESS the most **advanced neutron source** in the world.

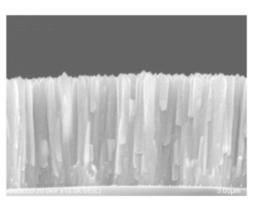
Who are the Instrument Data Scientists?

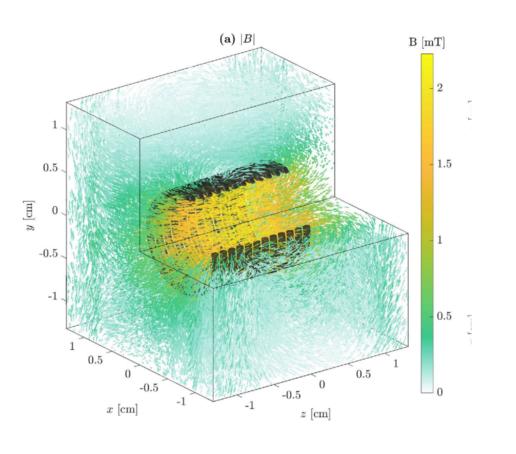




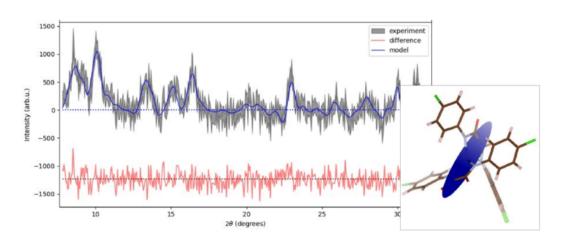




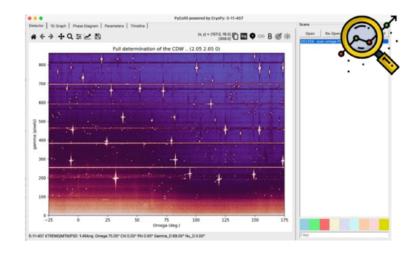

- Magnetostrictive Fe-Ga thin films
- Amorphous materials
- MD simulations



- Structural evolution
- Multi-scale/multi modal characterization
- Applied math: pattern recognition, tensor tomography
- ESS SOLID Lighthouse
- Affiliated Professor at DTU Compute

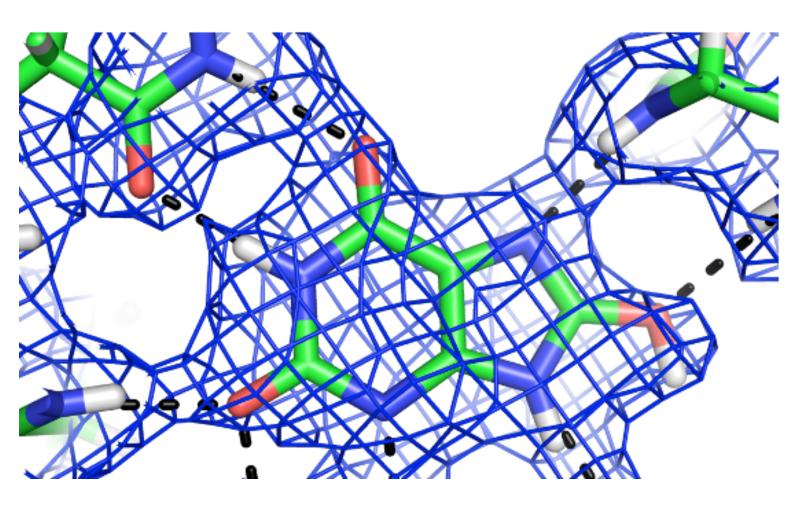


Principal Developer of the Crystallographic Library CrysPy


- Data treatment for powders and single crystal samples measured by polarized neutron diffraction.
- Analysis local magnetic anisotropy in molecular magnets, nanoparticles, and related materials.
- I am particularly interested in *advancing this technique for application with pulsed neutron sources*.

Principal Developer of the PyColl5 Software

 Designed for the visualization and analysis of experimental data collected on single-crystal diffractometers at ILL, including D10+, D9, D23, and XTREMED.


Polarized powder diffraction profile of Co-SMM and magnetization ellipsoid of Co.

PyColl5 interface displaying data collected on XTREMED@ILL.

- Protein and Small Molecule Crystallography
- Physical Organic Chemistry
- Crystallographic Data Collection Strategies
- Algorithms for Processing Reflection Data

- bilogical grazing incidence scattering
- model cell membranes
- reflectometry sample environment

- Focused on understanding soft materials with techniques for small angle scattering
- specifically with connections to Ionic Liquids and eutectic solvents
- Adjunct Professor, KTH Royal Institute of Technology

Interests

- magnetic excitations
- method development for
 - instrument twin simulations
 - data reduction & analysis

Projects

- alternate McStas code generator mccode-antlr
- faithful instrument simulations
 - mcstas- comps: readout-master, detector-tubes,
 epics-link,...
 - orchestration: restage, mccode-plumber, stacktainer
 - (BIFROST) calibrated instrument(s): niess
- data reduction, reliable (Q,E) to (ψ , k_{free}): undual
- data analysis, symmetry for cheaper model evaluations: brille

Soft matter inelastic neutron scattering

- the effects of monodispersity vs. polydispersity
- investigation of the kinetically changing samples (e.g. thermal denaturation, crystallization)
- method development for non-standard acquisition modes (FWS on IN16b)

Complimentary scattering techniques user

- SANS
- Xrays
- DLS

- Scientific Background:
 - PhD in Condensed Matter Physics (2022). Studied spin dynamics in Magnetic Topological Insulators/Semimetals
 - Computational Instrument Scientist in the Triple-Axis Spectroscopy group in Oak Ridge National Laboratory (2024-2025)
- Expertise:
 - Scientific software development for Inelastic neutron scattering data reduction/analysis
- Modeling and interpretation of magnetic excitations in quantum magnets
- Research interests:
- Emergent phenomena in quantum materials arising from the correlation and competition among electronic, lattice, and magnetic degrees of freedom, e.g. chiral magnons, altermagnetism.
- At ESS, I will focus on integrating instrument development with resolution-aware computational modeling to explore quantum magnets

Contact an Instrument Data Scientist

• (Internal) E-mail alias: ids@ess.eu

• Confluence: confluence.ess.eu/display/IDS

• Slack: #dmsc-ids

In person

Thanks for listening! Questions?