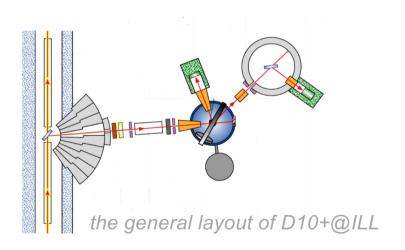


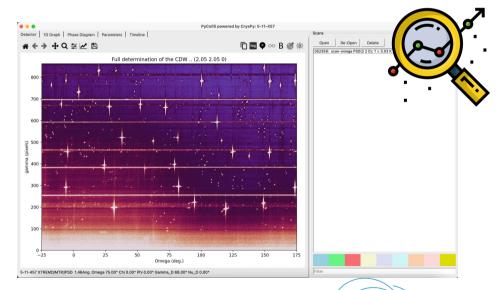
New CIS for Single-Crystal Diffraction


Iurii KIBALIN (CIS DMSC ESS)

STAP / October 2025

2023-2025: Responsible for D10+@ILL

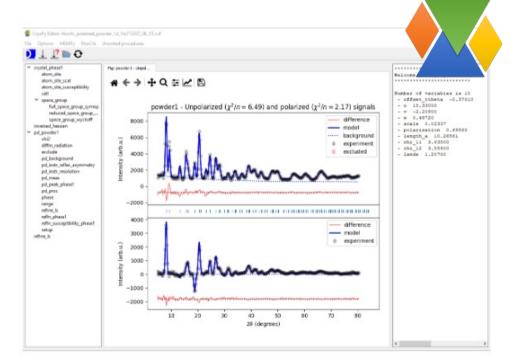
Specialization of the diffractometer D10+:


- Magnetic structures in single crystals, thin films and multilayers;
- Conventional crystallography at dilution temperatures (unique for 4C-dillution), under magnetic fields, and under pressures;

PyColl5:

software designed for intuitive data visualization and preliminary analysis

 Compatible with data measured on D10+, D9, D23, D19, XTREMED at ILL.


EUROPEAN SPALLATION SOURCE

https://code.ill.fr/kibalin/pycoll5

Analysis of half-polarized neutron diffraction data

The CrysPy library is an open-source program package that was originally developed *for polarized neutron diffraction* data analysis.

- The package allows the data treatment both for powders and single-crystal samples.
- Nuclear and (commensurate) magnetic structures refinement can be also performed based on the unpolarized neutron diffraction and X-ray diffraction data.
- CrysPy is one of the calculation engines integrated into the EasyDiffraction software developed by DMSC.

CIS for Single Crystal Diffraction

Position started September 1st 2025.

Several responsibilities among others of IDS*:

- Oversee, review, evaluate and take ownership of DMSC deliverables to relevant instruments, specifically the full data processing pipeline:
- Contribute to the development of open-source software where needed and appropriate;
- Spend up till 20% of time on local contacting for user experiments in alignment with instrument team;

Diffraction

DREAM #

Bispectral Powder Diffractometer

HEIMDAL &

Hybrid Diffractometer

MAGIC &

Magnetism Single-Crystal Diffractometer

*https://confluence.ess.eu/spaces/DMSC/pages/446677876/IDS+R2A2

MAGiC: McStas model

a polarized single-crystal diffractometer with polarization analysis dedicated to magnetism.

McStas model is based on the model of X.Fabreges

Simplification in the current model:

- Only cold spectra
- Only unpolarized beam
- Detector A is represented as 2D banana detector

Output of this McStas model:

 Event based data that can be used for data reduction pipeline (example of C60)

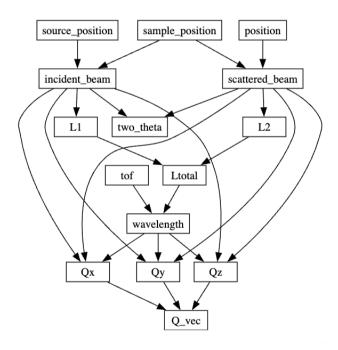
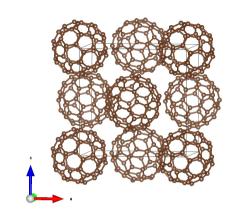
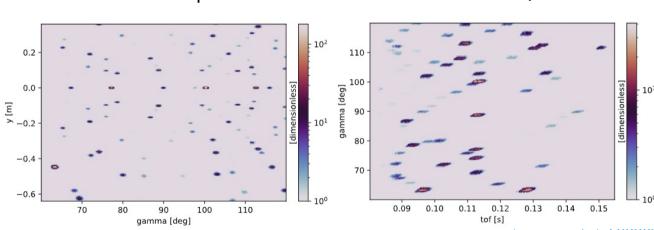


Table 11	
MAGiC Quick Facts.	
MAGiC Quick Facts	
Instrument Class	Diffraction
Moderator	Bispectral
Primary Flightpath	159 m
Secondary Flightpath	1 m
Wavelength Range	0.6–6 Å
Bandwidth	1.7 Å
Flux at Sample at 2 MW	$1.5 \times 10^9 \text{ n s}^{-1} \text{ cm}^{-2} \text{ (2.0-3.7 Å, full pulse)}$
Polarised Incident Beam	Permanent
Half-Polarised Detector Bank	
Q-Range	0.2–21 Å ⁻¹
Q-Resolution ∆d/d	Adjustable 1%–12%
Detector Coverage	60°[H] × 48°[V]
Polarisation Analysis Detector Bank	
Q-Range	0.2-6 Å ⁻¹
d-spacing Resolution ∆d/d	Adjustable 0.2%–4%
Detector Coverage	120°[H] × 6°[V]


Andersen, K.H., D.N Argyriou, A.J. Jackson, et al. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 957 (2020): 163402. https://doi.org/10.1016/j.nima.2020.163402. SPALLATION SOURCE

Data reduction using Scipp

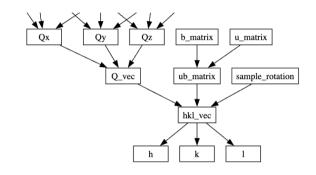
Graph to convert data to reciprocal space:

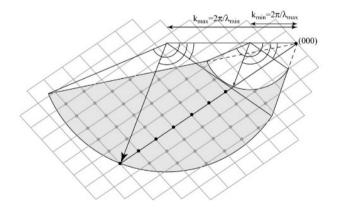


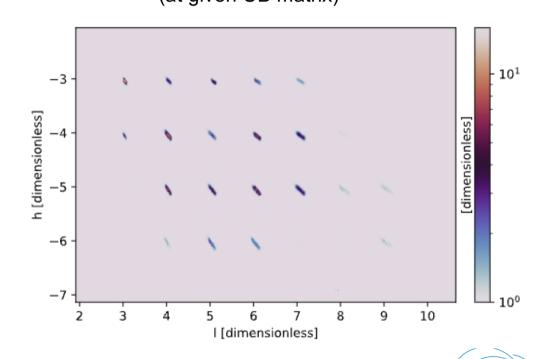
C₆₀ simulated event-based data

Gamma-TOF plot

Laue diffraction pattern

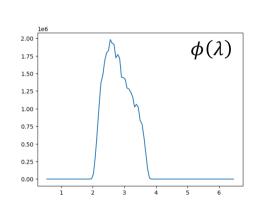

Diffraction STAP meeting


Iurii KIBALIN | 23rd October 2025 | Slide 6


Data reduction using Scipp: HKL space

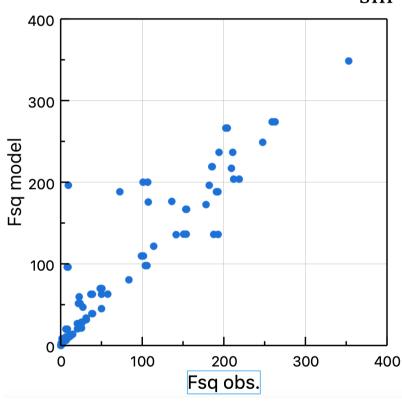
Converting to HKL space

Projection on HL-plane: (at given UB matrix)


EUROPEAN SPALLATION SOURCE

Diffraction STAP meeting

Iurii KIBALIN | 23rd October 2025 | Slide 7


Estimated $|F_{hkl}|^2$ using Scipp

$$I_{hkl} = s \cdot \phi(\lambda)\epsilon(\lambda)A(\lambda)y(\lambda) \cdot (1+\alpha)\frac{\lambda^4}{\sin^2\theta} \cdot |F_{hkl}|^2$$

$$A(\lambda) = 1$$
$$y(\lambda) = 1$$
$$\alpha = 0$$

 $\epsilon(\lambda) = 1$

s is the scale factor;

 $\phi(\lambda)$ is the incident spectral neutron flux;

 $\epsilon(\lambda)$ is the detector efficiency;

 $A(\lambda)$ is the absorption correction;

 $y(\lambda)$ is the extinction correction;

 $\alpha = I_{TDS}/I_{Bragg};$

 2θ is the scattering angle;

 F_{hkl} is the structure factor.

Data reduction using MANTiD

Home

Downloads

User Documentation

Developer Documentation

Forums

Contact Us

Q Search

Single Crystal Diffraction (Elastic)

In this page we describe a standard workflow for elastic single crystal diffraction data reduction at SNS. Many of these steps are encapsulated in the SNSSingleCrystalReduction algorithm. See scripts/Vates/Diffraction_Workflow.py for an example.

Contents

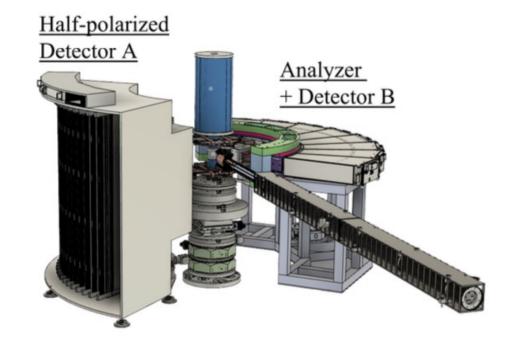
- · 1 Loading and Processing in Detector Space
- · 2 Finding Peaks in Detector Space
- · 3 Converting to Reciprocal Space
- · 4 Finding Peaks In Reciprocal Space
- · 5 Refining Lattice/UB Matrix
- · 6 Integrating Peaks
- 7 Exporting Data

Loading and Processing in Detector Space

- · LoadEventNexus and LoadEventPreNexus will load data into an EventWorkspace
 - For non-event data, e.g. WISH RAW files, you can use Load followed by ConvertToEventWorkspace to get an EventWorkspace.
- · Use the Minus algorithm to subtract a background.

Pipeline:

- Finding peaks
- Refining UB-matrix
- Peaks' indexation
- Integrating peaks



- UB matrix and refined Unit cell parameters;
- HKL list with integrated intensities, wavelength, d-space, 2theta

Priority tasks: (i) McStas modeling

- Include polarization of neutron beam and thermal spectra in McStas model;
- Detailed McStas Model for
 - 3D Detectors on MAGiC: Detector A and Detector B;
 - Neutron Guide System on MAGiC;
 - Beam Stop and Sample Node on MAGiC.

Priority tasks: (ii) Data reduction by MANTiD and Scipp

- Transformation to Q-space: Detector A (no analyzer) and Detector B (with analyzer);
- Identification of strong peaks in reciprocal space;
- Finding the UB matrix, considering cases with multiple grains/domains, high background and so on;
- Integration of both strong and weak reflections based on the UB matrix;
- Correction on absorption and extinction.

Priority tasks: (iii) Data analysis

The workflow for the following single crystal experiments on MAGiC should be considered:

- Single-Crystal Laue TOF Diffraction;
- Half-Polarized Single-Crystal Laue TOF Diffraction;
- XYZ Polarization Analysis Laue TOF Diffraction;
- Spherical Polarimetry;
- Diffuse Magnetic Scattering.

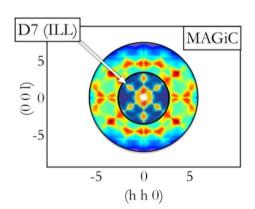
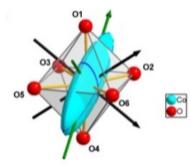



Figure 12: Simulated diffuse scattering of Ho2Ti2O7

Figure 2. Co2+ magnetic ellipsoid for the complex [Co(DMF)6]2+[3].

Conclusion

- > Basic McStas Model of the MAGiC diffractometer;
- Data reduction pipeline for single crystal Laue TOF diffraction;
- Identification of priority tasks, organized into three blocks: (i) instrument modelling, (ii) data reduction, and (iii) data analysis.

Thank you for your attention!

