

EUROPEAN SPALLATION SOURCE

TBL Motion Safety System (as part of the Common MCA Project)

Instrument Safety Readiness Review TBL

Agenda

- 1 Instrument Hazard Analysis (IHA)
- 2 Risk Analysis & Treatment
- 3 Safety Requirements Specification (SRS)
- 4 E-Stop Design
- 5 Design Verification
- 6 E-Stop Design Implementation & Installation at TBL
- 7 Validation
- 8 Operation
- 9 Summary

10

Instrument Hazard Analysis (IHA)

TBL Reference Documents:

ESS-3078238 - TBL Instrument Hazard Analysis (IHA)

Instrument Hazard Analysis

Handover of hazard treatment to Motion Safety

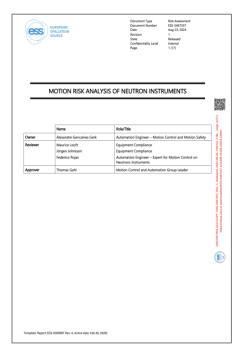
- Two risks in the IHA identified; classified as CX3 (in maintenance)
- Transferred to Motion Safety WU of CMCA;
- Both are in the Bunker area with no access of user personnel

List conventional hazards related to the various parts and areas of the instrument. See blue heading's				Neutron Instruments Hazards Analysis						
comments for more information on each column.				Component						
Hazard number	Buil ding	Instrument Area	Instrument Sub- area	Instrument System Designation	Sub-System Designation	Component name		Maintena	ince	
ConHaz7	D03	In-Bunker	Heavy stand		Beam geometry conditioning	Adjustable Collimator	Leve	l of Risk	Controls to mitigate risk	Action Owner
ConHaz20	D03	In-Bunker	Light Stand	Beam Transport and Conditioning System	Beam filtering System	Filter Station	CX3	Tolerable	Risk mitigation is transferred to the Motion Safty Work Unit of the common MCA Project (CMCA)	СМСА
_							CX3	Tolerable	Risk mitigation is transferred to the Motion Safty Work Unit of the common MCA Project (CMCA)	СМСА

Risk Analysis & Treatment

TBL Reference Documents:

ESS-5467337 - Motion Risk Analysis of Neutron Instruments


Risk Analysis & Treatment

ess

ESS-5467337 - Motion Risk Analysis of Neutron Instruments

- Limits of System
 - 1. Area: Motion Safety focusses on areas accessible to instrument users (typically in the cave).
- 2. Life phases: Experiment Setup & Local Maintenance considered.

Life phases	Cave (User Access, controlled by PSS)	Cave (Service & Maintenance Access, controlled by PSS)	Beam Line, Bunker (Service & Maintenance Access, controlled by procedures)		
TBL Areas	TBLCave	TBLCave	TBL In-bunker area		
Installation, commissioning and testing	excluded	excluded	excluded		
Experiment Run	no risks	no risks	no risks		
Experiment Setup	included	N/A (no access)	N/A (no access)		
Local maintenance	included	included	excluded		
External maintenance (in workshop)	excluded	excluded	excluded		

ESS-5467337

Risk Analysis & Treatment

ess

ESS-5467337 - Motion Risk Analysis of Neutron Instruments

- Simplified approach for hazard analysis and mitigation.
 - 1. Motion Safety focusses on areas accessible to instrument users (typically in the cave).
- 2. Only two levels defined following the severity path; required Performance Levels a/b and c/d.

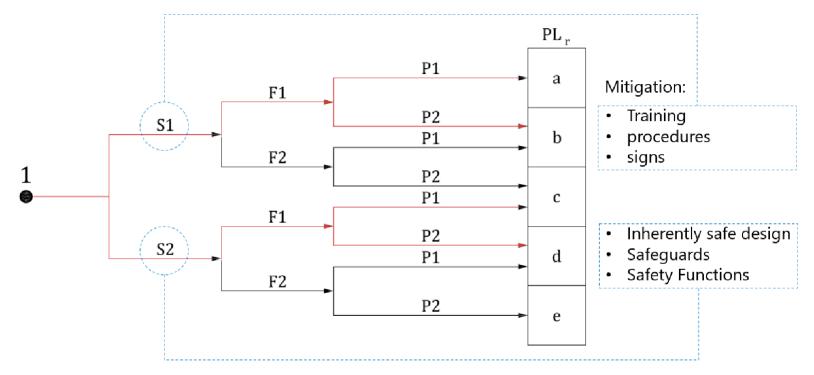
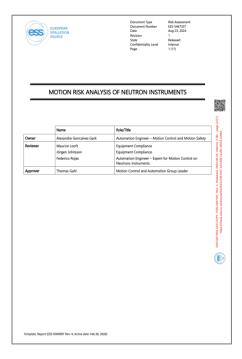



Figure 8 - Risk evaluation

ESS-5467337

Safety
Requirements
Specification (SRS)

TBL Reference Documents:

ESS-1315508 - TBL Table-of-Motion, sheet 3

Safety Requirements Specification

ess

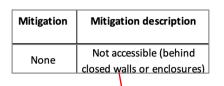
Table-of-Motion, Sheet 3

Safety Requirements Specification

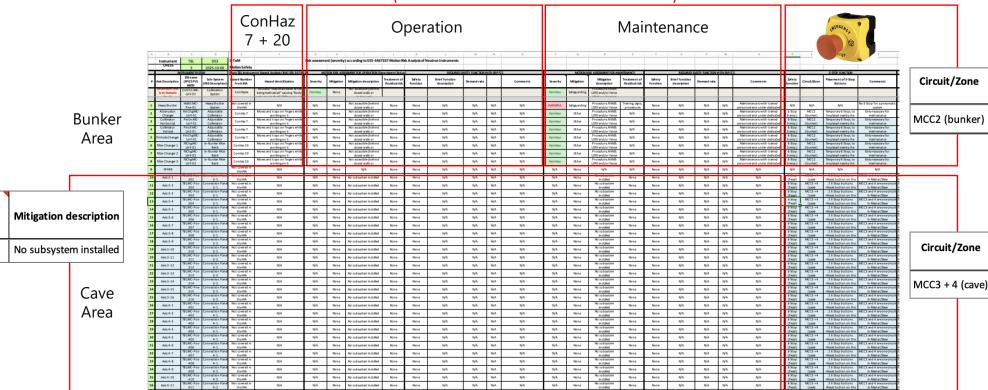
Placement of E-Stop

Buttons
Temporary E-Stop; to be

placed nearby the motion


2 E-Stop buttons +Reset

button on the cave table



Mitigation

None

Severity	Mitigation	Mitigation description	Treatment of Residual risk	
HARMFUL	Safeguarding	Procedure, RAMS: LOTO and/or fence off	Training, signs, procedures	
Harmless	Other	Procedure, RAMS: LOTO and/or fence off	N/A	

	Circuit/Zone Placement of E-Stop
--	----------------------------------

E-Stop Design

Reference Documents:

ESS-5846469 - Motion Safety Test Bench (ePlan)

E-Stop Design

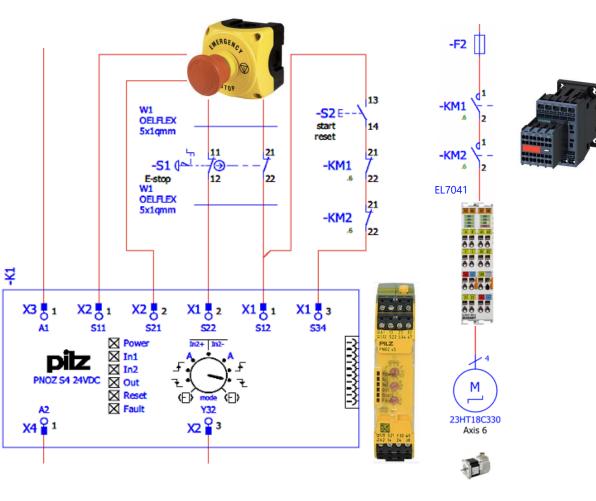
ess

Design Principle

- Modularity: Define different areas; match the area with the respective control cabinets; this includes standardised circuits in the cabinet and and a Master/Slave hierarchy between (if applicable).
- Scalability: A scalable number of fixed installed E-Stop buttons + one Reset button in the areas accessible to normal users (i.e. the cave).
- Performance Level d as a matter of principle.
- Currently Stop Category 0 (STO); design work is ongoing for Stop Category 1 (SS1).

EN 60204-1	EN 61800-5-2
Stop category 0	Safe torque off (STO)
Stop category 1	Safe stop 1 (SS1)
Stop category 2	Safe stop 2 (SS2)

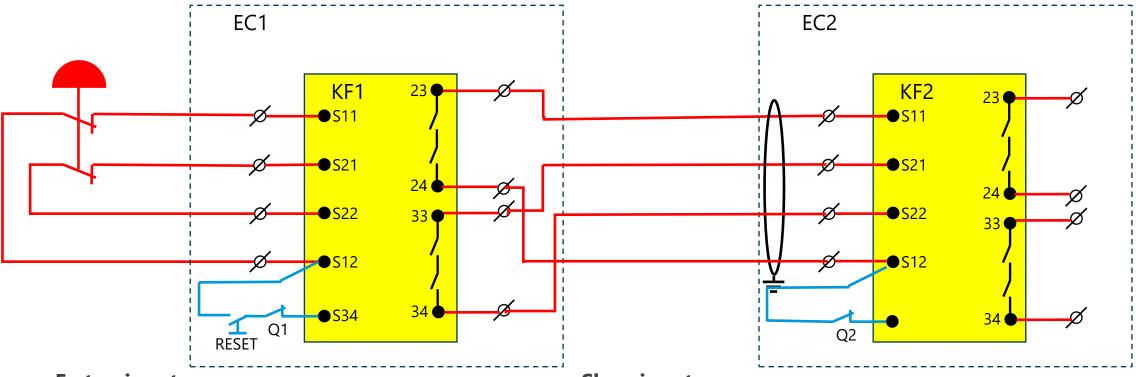
E-Stop Design


Design of E-Stop Circuit

Principle: Contactors are cutting power to the stepper motor drives

Performance Level d: How to achieve?

- Safety Relay
- 2 channels
- With detection of shorts across contacts
- With detection of shorts to Earth
- Safety contactors
- Siemens safety contactor type 3RH2262-2BB40
- 2 in series
- NC contact in feedback loop



E-Stop Design

Master / Slave

E-stop input

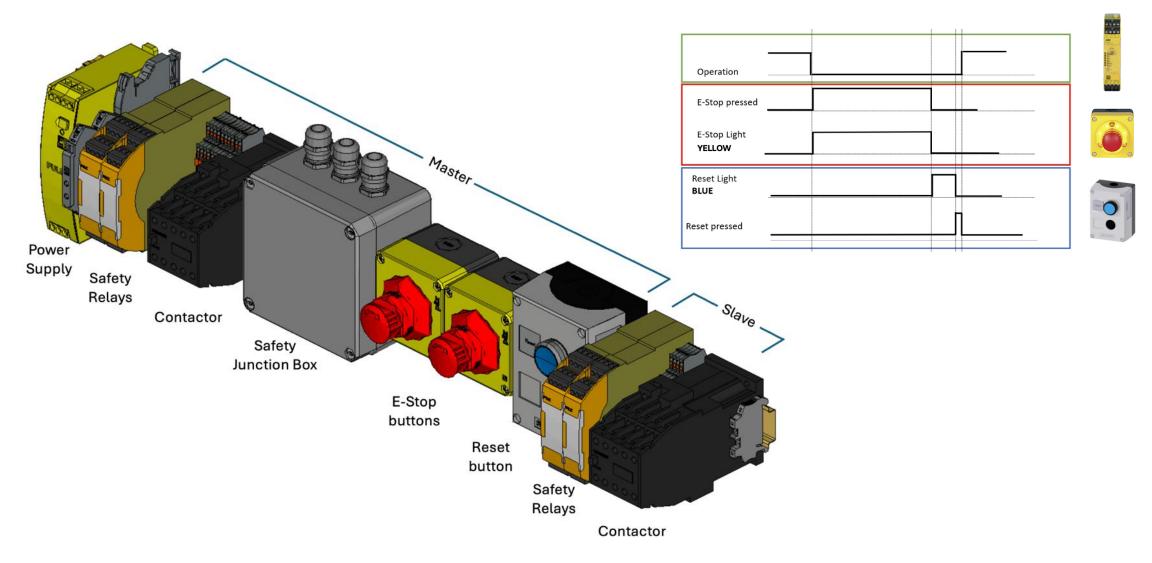
- Dual-channel operation with detection of shorts across contacts.
- Earth fault detection in circuit.
- Reset with falling edge

Slave input

- Dual-channel operation with detection of shorts across contacts.
- Earth fault detection in circuit.
- No special cable necessary (just shielded)
- Auto-Reset

Design Verification

Reference Documents:


ESS-5830036 - Design Verification & Test Report for Motion Safety E-Stop Circuit

ESS-5846488 - Design Verification Calculation (SISTEMA) for Motion Safety E-Stop Circuit

Design Verification

Functional Verification – Test Bench

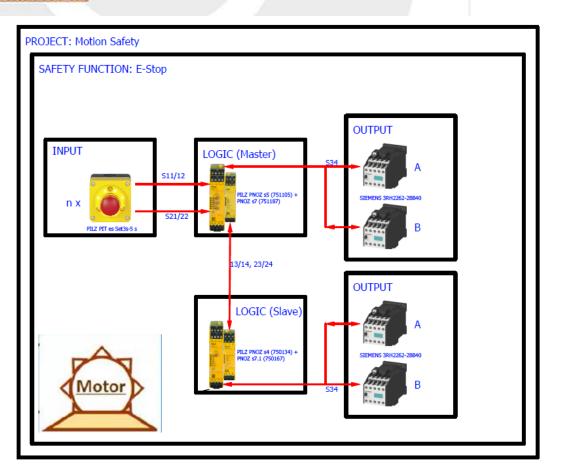
Design Verification

SISTEMA calculation

The SISTEMA analysis for the Motion Safety – E-Stop Circuit has been successfully completed according to EN ISO 13849-1:2023 and ISO 13850:2015.

- The required Performance Level determined by the risk graph was PLd, with a calculated PFH = 1.45E-7 [1/h]; PLd was achieved.
- All subsystems (Pilz E-Stop Boxes, Pilz PNOZ relay, and Siemens SIRIUS contactor relays) demonstrated compliance with relevant requirements for Category 3 or 4 architectures, with high MTTFD values, diagnostic coverage ≥ 90%, and fulfilled Common Cause Failure (CCF) measures.
- No warnings or non-conformities were reported in SISTEMA's evaluation.
- Design of the Motion Safety E-Stop function meets the required safety integrity level.

Safety Integrity Software Tool for the Evaluation of Machine Applications Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), 2020



Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung

Version of software: 2.0.8 Build 4 Version of standard: ISO 13849-1:2015, ISO 13849-2:2012 Version of VDMA database: VDMA 66413 1.0.0

Information about the standard

E-Stop Design Implementation & Installation at TBL

Reference Documents:

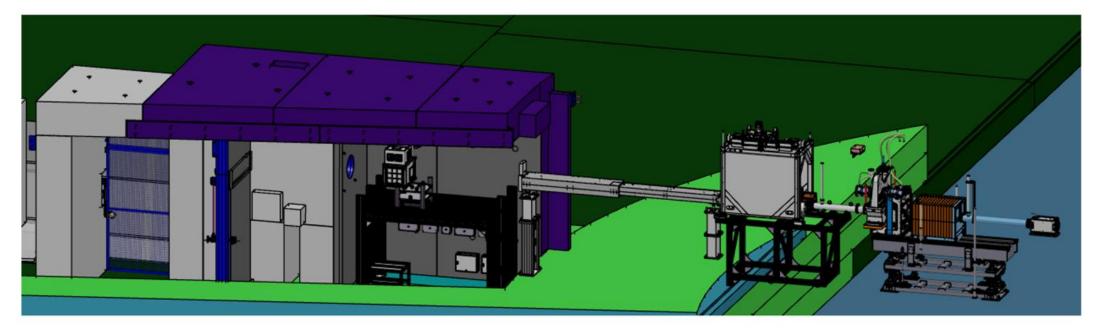
ESS-5513699 - System Block Diagram for TBL Motion Control

ESS-5346225 - TBL Motion Control 2 (In-Bunker) ePlan

ESS-5346226 - TBL Motion Control 3 (Cave I) ePlan

ESS-5346227 - TBL Motion Control 4 (Cave II) ePlan

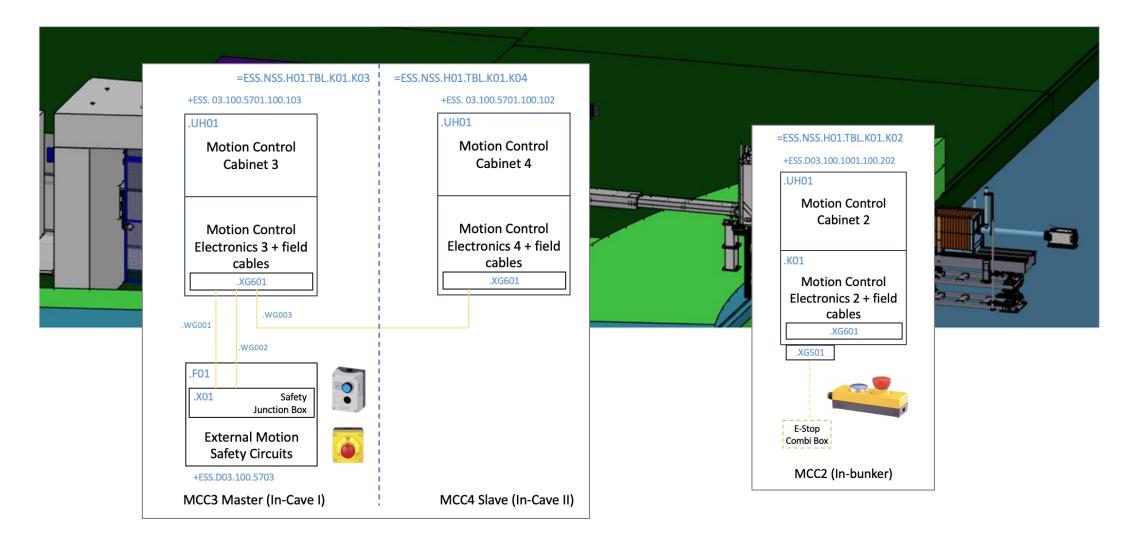
ESS-5516374 - System Design Description - TBL Motion Control System


ESS-5595113 - TBL Quality Inspection Report

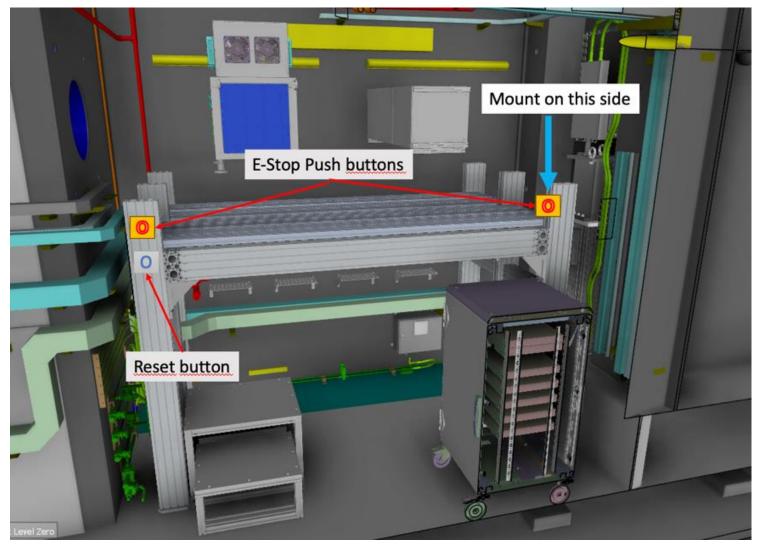
ESS-5846444 - MCA Self-Inspection Report for TBL Motion Control

ESS-5513746 - TBL Inspection & Test Plan/Report

Area



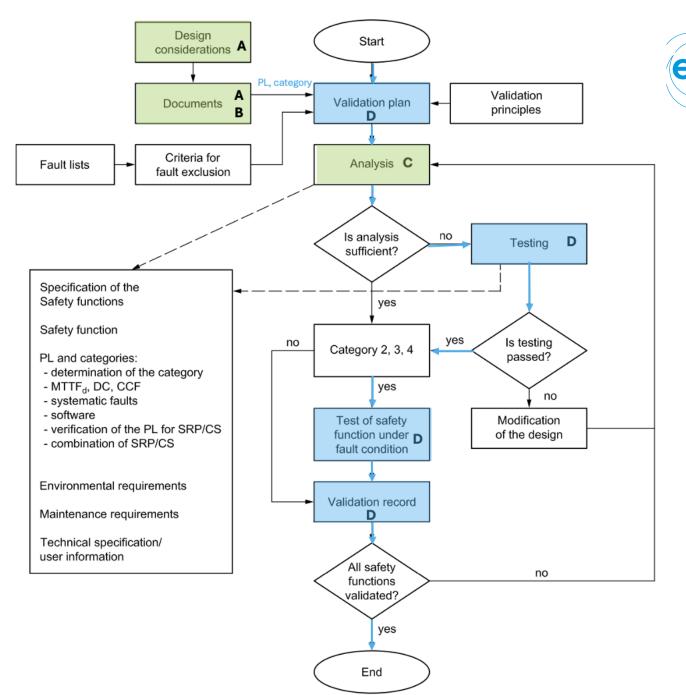
Cave Bunker Area


Implementation of E-Stop Systems

Location of E-Stop and Reset Buttons

Validation

Reference Documents:


ESS-5846551 – Validation Plan/Report for Motion Safety on TBL MCC2

ESS-5846552 - Validation Plan/Report for Motion Safety on TBL MCC3 + MCC4

Validation

SS-EN ISO 13849-2

- A. ESS-5467337 Motion Risk Analysis of Neutron Instruments.
- B. ESS-1315508 TBL Table-of-Motion (sheet 3).
- C. ESS-5830036 Design Verification & Test Report for Motion Safety E-Stop Circuit.
- D. ESS-5846551 Validation Plan/Report for Motion Safety on TBL MCC2.
 ESS-5846552 – Validation Plan/Report for Motion Safety on TBL MCC3 + MCC4.

Validation

Validation Test Plans / Reports (MCC2-Bunker & MCC3/4-Cave)

2.3. Test Readiness

#	Reference Documentation		CHESS ID
[1]	TBL Instrument Hazard Analysis (IHA)	ESS-3078238	
[2]	TBL Table-of-Motion (ToM), sheet 3	ESS-1315508	
[3]	TBL Motion Control 3 (Cave I) ePlan		ESS-5346226
	TRI Motion Control 4 (Cave II) ePlan		

Test under Fault Conditions:

SUMMARY FINDINGS

Pass | Fail | N/A | Signature of

We used the test on the test bench as "test on a hardware model" as defined in clause 9.1 of SS EN ISO 13849-2.

Date

	* **	
[3]	TBL Motion Control 3 (Cave I) ePlan	
	TBL Motion Control 4 (Cave II) ePlan	TEST CASES (TO BE) PERFORMED
[4]	System Design Description - TBL Motion Control Syste	
[5]	Design Verification & Test Report for Motion Safety E-	
[6]	Quality Inspection Documents	1. Document Check & Visual Inspec
	1. TBL Inspection & Test Plan/Report (new revision)	Comments:
	2. MCA Self-Inspection Plan for TBL Motion Control	
	3. TBL QC Electrical Inspection Report (new revision)	2. Behaviour after Shutdown
1		

- 1			-	3	
-				Tester	
	1. Document Check & Visual Inspection	Х		Safaa Zaki	2025-09-08
	Comments:				
. I				l	

Both Validation tests have been passed and approved.

n) ol	1. Document Check & Visual Inspection Comments:	х		Safaa Zaki	2025-09-08
on)	2. Behaviour after Shutdown Comments:	x		Safaa Zaki, Ruben Martinez	2025-09-08
	3.1 Function of Master E-Stop circuit (MCC3) Comments:	x		Safaa Zaki, Ruben Martinez	2025-09-08
	3.2. Function of Slave E-Stop circuit (MCC4) Comments:	x		Safaa Zaki, Ruben Martinez	2025-09-08
	4. Test under Fault Conditions Comments:		x	Safaa Zaki	N/A

Operation

Reference Documents:

ESS-5669198 - Operation Manual - MCU5001: 16Ax. Motion Control Cabinet

Operation

27

ESS-5669198 - Operation Manual - MCU5001: 16Ax. Motion Control Cabinet

- All three motion control cabinets on TBL (MCC2, MCC3, MCC4) are of the standardised type MCU 5001.
- Checks and LED indicator status tables during setup and E-Stop sequences are part of the Generic MCU 5001 Operation Manual.
- For the maintenance part this document is referring to ESS-5483415 - Service & Maintenance Plan for MCA Cabinets and Boxes.

Document TypeManualDateOct 2, 2025DocumentESS-5669198StateReleasedNumberRevision2Confidentiality LevelInternal

6. MAINTENANCE

Detailed information about the maintenance plan for all MCA cabinets and boxes is provided in ESS-5483415, [7].

10. Check other status indicator LEDs on the safety relay for normal operation.

Status	indicators
•	FAULT
*	IN1 Input circuit at S12 is closed.
*	IN2 Input circuit at S22 is closed.
→	OUT Safety contacts are closed and semiconductor output Y32 carries a high signal.

Sequence	E-Stop LED in door	LED on E- Stop 1	LED on E- Stop 2	LED on Reset button	LEDs on Safety Relay (In 1)	LEDs on Safety Relay (In 2)	LEDs on Safety Relay (out)	LEDs on Safety Relay (Reset)
Initial state								
Push E-Stop button 1								
Push E-Stop button 2						0	0	0
Pull E-Stop button 1						0		
Pull E-Stop button 2								
Push Reset button								Reset LED on safety relay is ON for the time the button is pressed

Table 3: E-Stop indicator sequence

Summary

Motion Safety at TBL

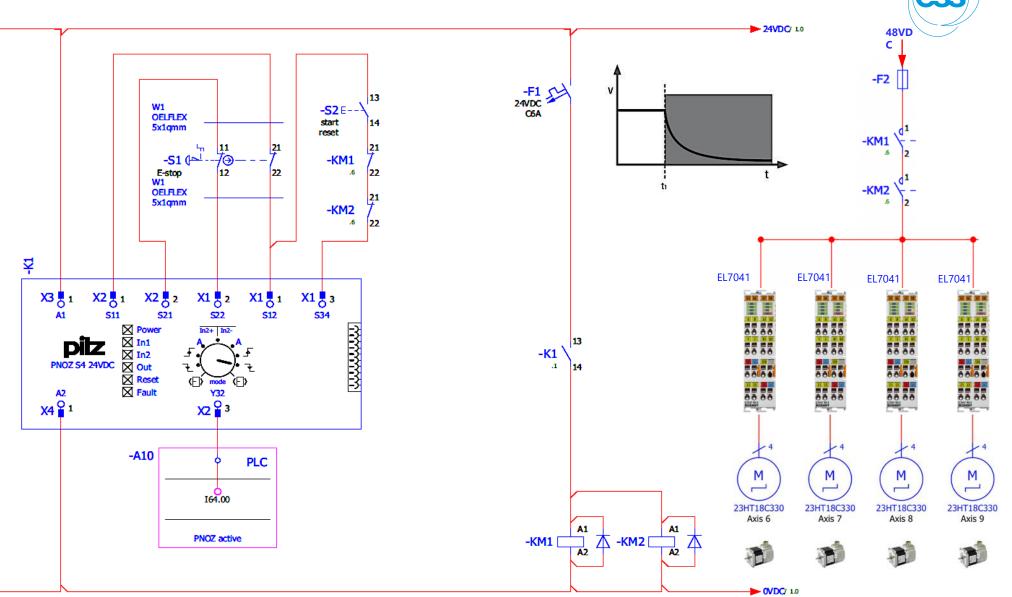
Summary

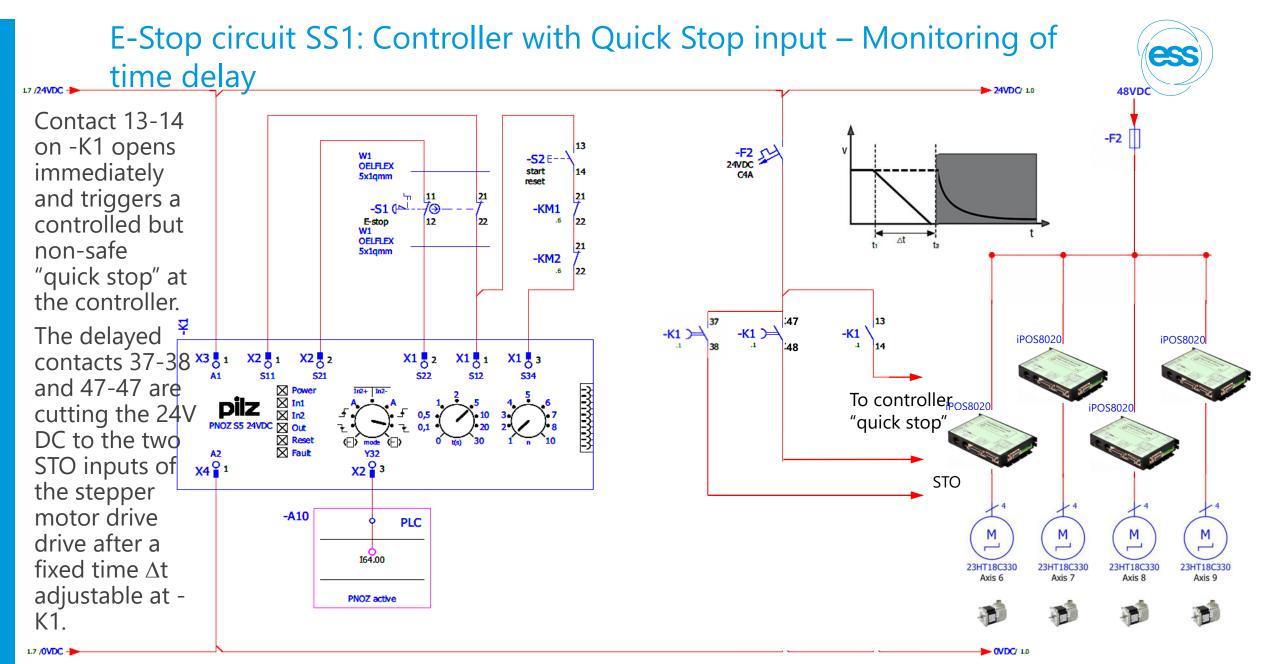
- TBL Hazards on Moving Machinery has been transferred to Motion Safety (ConHaz 7 + 20).
- For experiment operation no hazards could be identified:
- Bunker Area: Area is covered by shielding walls and blocks and is only accessible for service and maintenance.
- Cave Area: No subsystems have been installed yet; evaluation needs to be done with each new installed subsystem and additional safety functions defined and designed if necessary.
- For maintenance Motion Safety is achieved by special training, procedures and dedicated Risk Assessments (RAMS) based on tasks or area including LOTO and/or fence off.
- An E-Stop system for Cave and Bunker area has been designed, verified, installed and validated.
- The whole process is documented with the documents submitted to this review.
- The system is ready for trial operation of the instrument.

Motion Safety at TBL

Applicable Standards

- SS-EN ISO 12100 Safety of Machinery General Principles for design Risk Assessment and Risk Reduction
- SS-EN ISO 13849 Safety of Machinery Safety Related Parts of the Control System (Parts 1 and 2)
- SS-EN ISO 13850 Safety of Machinery Emergency stop function Principles for design
- SS-EN EN 60204-1 Safety of Machinery Electrical Equipment of Machines
- SS EN 61800-5-2 Adjustable Speed Electrical Power Drive Systems Part 5-2: Safety Requirements - Functional

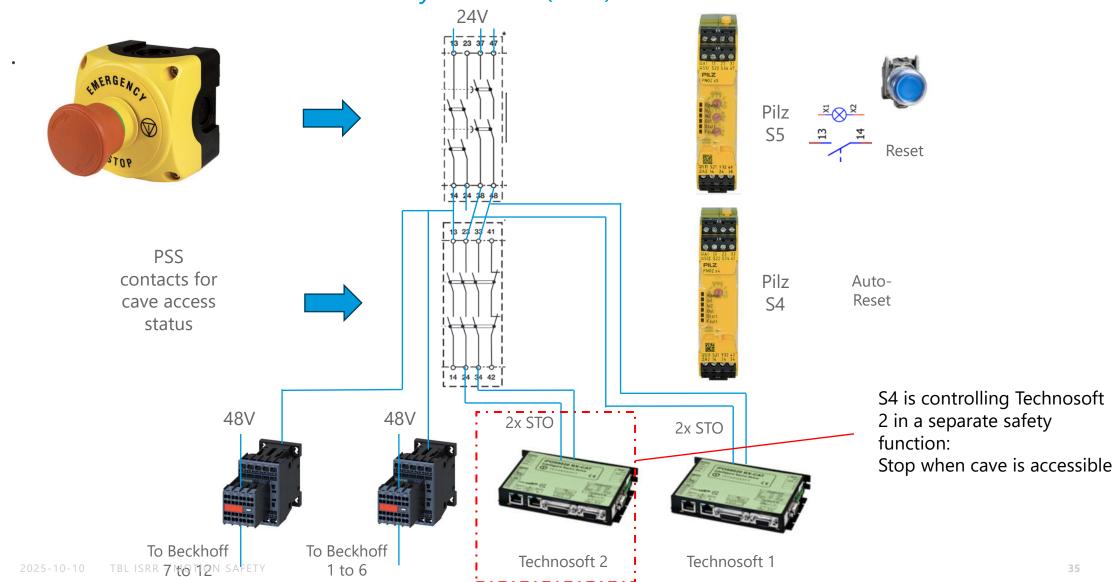



Additional Information

E-Stop circuit STO: Switch drive power off – Small stepper motors

When the E-STOP push button -S1 is operated, the input loop on safety relay -K1 is cut, the safety contacts are opening the power to contactors -KM1 and -KM2 to cut the 48V DC current to the group of stepper drives.

The auxiliary contacts of -KM1 and -KM2 are included in the reset loop of -K1.

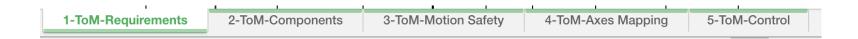


Bifrost Motion Safety

Cabinet 3: MCU 5001a – 2 Safety Circuits (STO) for 12 Beckhoff + 2 Technosoft

ess

Structure


Sheet 1: Sub-System Requirements

Sheet 2: Components Selection

Sheet 3: Motion Safety Requirements

Sheet 4: Axes Distribution and Motion Control Cabinets Requirements

Sheet 5: Higher Control Requirements

