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Figure 2.17: Non-destructive imaging of an Indonesian dagger sheath, illustrating how neutrons mitigate
the obscuring e↵ects of the out metal cover on images of the inner wood parts. Top left: A photograph
of the dagger and the sheath, which has an outer metal cover (containing silver) and an inner wooden
structure. Top right: A neutron transmission (radiography) image. Bottom left and right: 3D renderings
of neutron and X-ray tomography data, respectively. Courtesy of E.H. Lehmann [165].

2.2.8 Fundamental and particle physics

Fundamental physics seeks to understand the “what” and the “how” of the universe. Even
slight deviations from the predictions of the Standard Model, which embodies our current state
of understanding of particle physics, would have important implications for both cosmology and
particle physics. Fundamental neutron physics o↵ers high precision tests of this model. High
brightness and long pulses will allow a wide range of fundamental phenomena to be probed with
sensitivity superior to that which is possible at present.

Fundamental physics currently stands at the interface of particle physics with nuclear physics, astro-
physics, and cosmology, as illustrated in Figure 2.18. For three decades, the Standard Model of particle
physics has successfully provided the framework for explaining phenomena involving three of the four
known forces of nature. However, there exist many reasons to believe that the Standard Model is not the
complete theory. Besides the high-energy frontier, there exists another frontier in the search for what is
called the New Standard Model – the high precision frontier. The pattern of deviations (or their absence)
that emerges from precision experiments is a “footprint” of new forces. The higher brightness and the
pulse structure of ESS provide new possibilities for fundamental neutron physics experiments. It will be
possible to investigate a wide range of fundamental phenomena with a sensitivity superior to that of previ-
ous experiments. A review of possible topics in which the gain factor over current facilities is expected to
be large can be found in articles by Rathsman and Sand [172,173]. The fundamental physics science topics
mentioned above are addressed by the fundamental and particle physics beamline in the reference
suite.
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MEBTRFQLEBTISRC
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75 keV 3.6 MeV 90 MeV 216 MeV 571 MeV 2000 MeV
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2.5 m

Length (m) W_in (MeV) F (MHz) β Geometric No. Sections T (K)
LEBT 2.38 0.075 -- -- 1 ~300
RFQ 4.6 0.075 352.21 -- 1 ~300
MEBT 3.81 3.62 352.21 -- 1 ~300
DTL 38.9 3.62 352.21 -- 5 ~300

Spoke 55.9 89.8 352.21 0.50 (Optimum) 13 ~2
Medium 

Beta
76.7 216.3 704.42 0.67 9 ~2

High Beta 1 42.6 571 704.42 0.86 5 ~2
High Beta 2 51.12 870 704.42 0.86 6 ~2
High Beta 3 85.2 1260 704.42 0.86 10 ~2

HEBT 136 2000 704.42 — 14 ~300 / ~2

Design Drivers: 
Ave. beam power 5 (2) MW
Peak beam power 125 (50) MW
High availability >95 %

Energy 2.0 (0.8) GeV
Current 62.5 mA
Repetition rate 14 Hz
Pulse length 2.86 ms 
Losses <1W/m
Ions p
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Target shaft
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https://www.youtube.com/watch?v=6pP-AIse7f0


ISSE 2026N.Milas

NEUTRON BEAM MODERATION

20

On average the neutron coming out form the target 
travel at 5-10% of the speed of light (~0.0001 Å 

wavelength). In order for those neutron to be useful 
they need to be slowed down (increased wavelength). 
This is achieved using a para-hydrogen and water-based 

moderator and a beryllium-lined reflector. 
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