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Cooling with Liquid and Vapour

3 PSI Center for Neutron and Muon Sciences 19.01.2026



PAUL SCHERRER INSTITUT

s Cooling with Cryogens

 Utilize cryogenic liquids for cooling
* Cryogenic liguids are liquids with a boiling point below approximately -150°C

Fluid Freezing (K) Boiling (K)
Hydrogen 14.01 20.27
Neon 24.5 27.09
Nitrogen 63.15 77.36
Argon 83.81 87.24
Oxygen 54.3 90.18

How can a boiling liquid be used for cooling?
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Latent heat of evaporation

Chemical Heat
Volume, V Enthalpy, H potential,#  Entropy, S capacity, C,
' i N R Y Y A
al - S
:- } "’IJ—I—FJ :‘ﬂf-- e
b, . AN A AN A . )

Temperature —

liquid to gas transition requires heat transfer from surrounding.

Energy required to free molecules Energy required/released to
or atoms from bonds change the entropy of the
Enthalpy of evaporation system
L — AH?U ‘I’ pAV L= (ASgas — ASliquid)T
Change of Work done by

internal energy expanding gas



Latent Heat of Helium and Nitrogen

91 -1

boiling point (K 77.3 4.22 3.19 e He

latent heat (J/g) 198 20.9 7 s f ‘
volume ratio Gas/liq 694 750 750 ¥ o L :
liguid density (g/cm3)  0.808 0.125 0.055

ﬁ;l;i;iz'sPhysical Chemistry, Enss Hunklinger,Low temperature :;%

A heat load of 1TW
to a He4 bath will
result in an evaporation rate of
1.4W/h = 1scm/h = 16 In/min 0 1 2 3 4

Temperature, T (K)

F. Pobell, Matter and Methods at Low Temperatures

3l of liquid Helium cools
100g of Cu from RT—>4K



Vapour pressure curve

The high Art of baking at high altitude |

https://www.exploratorium.edu/cooking/icooks/article-3-

03.html
e “| In a boiling liquid the pressure
of the gas reaches saturation
SRR CT & . 1 Rln(£)\ -1
S50 S\ 4 (Thermal equilibrium) T oo = [ — _ Po
R s boiling —
\ Ty L
/ reducing the vapor pressure (pump)
| =» Boiling point of liquid is reduced —L/RT

A =P ) Pvap X € 4

[d_P] . Sgas — Sliq o L ~ L - Lp

dT vap - Vm,gas — Vm,liq B T(Vm,gas - Vm,liq) ~ Tvm,gas - RT?

Clausius-Clapeyron



Vapour pressure curve

PSI

L= 64735 K
Vapor pressure of selected gases Helium-3 |
m— Helium-4 100 bar
— Nitrogen 150.86 K
— Argon
—L/RT = |
p OC e e critical point 20 =
m  boiling point
520K A triple point
K ,
H000-mbar 3.2 # lambda point 000 mbar t-bar 774K 000 mbar tbar
42K 373.2K
100-mbar H0-mbar 100-mibar
H.O
Ar
HO-mibar HO-mbar
27316 K
mbar -mbar -mbar
0.1 mbar 0.1 mbar 0.1 mbar
‘ 5 b R S .o ' i e . ' e e ' .




Cooling by Evaporation

P

/

Cooling power
. d@ dn 1T
Q:EZELOCvaapO(e /
Recap vacuum pumps:
Pumping speed SO — Q
at gy
Throughput: {pv = So "D = %p

@

Cooling power calculation

4Q _ dn
dt  dt
dn pV 1 dV

dt (ﬁ)/dt: RrRT" dt




Cooling by evaporation — Example  PSI

liquid 4He cooled cryostat
1 T=1.7K cooling power 100mW

Pyap = 10mbar

@) dQ dn )
7
dt dt
dn pV 1 dV
e d(—) L
dt RT / RT" dt
i 1 dV
Q — LMHe S Pvap 3,
RTQRI;“'dt 10000
Pumping speed So = e
0 T MHepvap 10001 —

o _ 0.1W-8.314J(molK) ! - 300K
07 20Jg~1-4gmol-1- 1000 Pa

Pumping speed l/min
o
o

//x
— NeoDry7E
NecDry 1 56
NeaDry30E
—— NecOry26E
NeoDry 60
NeaDry200E

0.001 0.01 0.1 1 10 100 1000
inlet pressure

Sp=11scm/h =187 In/min

Kashiyama Neodry



Cooling with Gas

1000

101}

Enthalpy (J/g)

110

1000

100}

[a—y

Volume ratio gas/lig

1.00mbar
1000.00mbar

10 100
Temperature (K)

1mbar
500mbar
1000mbar

10 100
Temperature (K)

H(T > 4.2K) = 5.2T[K] + 15.1[J /g]

L=21[J/g]

Liquid required to cool 1kg of material from
300K to 4K

Spec Heat He liq.liter
mtegral [kJ] Evap cooled

Copper
Stainless
Al

Slow cooling saves Helium

92
178

35
67

and avoids trouble

Miiq

Mgolid

He liq.liter
Enth cooled

0.9
1.7

).

2

300 Csolid (T)
5.2T + L

dT



Joule Thomson effect

isenthalpic expansion of a real gas or liquid !
throttled gas expansion = SO o 3004/g
will lead to a temperature change i 40 \\ %
g 30 —= \.“ 165
§:§- 2()} ‘,' i‘(z)xs)
10 ? @
Pr TrHy P2 T Hy H, = H, 020 40 60 30 100 120"
Pressure P(atm)
Ul 4 P1V1 — U2 4 p2‘/2 F1G. 1.4. Isenthalpic curves of helium.
work during expansion against.ir?ner energy m max inv. Temp (K)
JT-coefficient Nitrogen 621
N p= (%)H Argon 794
u>0 cooling CO, 1500
T u<0 warming Hydrogen 205
1 ov
pyT = o |:T<8_T>p - ’U} Helium 45
o L2 Neon 250
Cp <RT b)



Cooling Cycles



PAUL SCHERRER INSTITUT

=

1-2)

2-3)

3-4)

4-1)

V. Regenerator V,

Ll

5 closed cycle refrigeration (stirling cooler)

2)

3)

1)

4)

2 )
)3

3) 4)

Carnot Cycle

Q1=Q2+W
@,
Ty — 13
T

> ——1)
W_Q2(T2
T2=4.5K
T, = 300K
Q, = 1W D W > 66W



Stirling Cooler - Example

CryoTel® GT

Cooling power@ 77K : 16 W

Required input ideal process
Q =16W(300K/77K-1) = 46W
Actual power input: 240W
Efficiency : ~20% (46W/240W)

Percent of Carnot Efficiency

[
j=3

c
c
T EENENNNEEEEE” _dENENNES| IREENENEREE
E
(W8]
<+
Q 4 |
* Verycompact ™ s
(&) —
« Long lifetime 5 Kool T
P ' w35 C reject
* Operates at 50Hz
f . «45 C reject
* Large vibrations EED (ENEEENENSEENSENENS(EREREANEEN
30 40 S0 60 70 80 90 100
Cold Tip Temperature (K)

https://www.sunpowerinc.com/products/stirling-cryocoolers/cryotel-cryocoolers/gt



Gifford- McMahon Cycle

Py —

High pressure gas enters at
warm end

@ |

Regenerator moves to lowT
region

Cold gas cools the
regenerator

https://en.wikipedia.org/wiki/Cryocooler
#/media/File:GM_Cycle_Cryocooler02.jp

g

PSI

Characteristics

* Efficiency not very high

 Spatial separation of
compressor and cold end

- Use efficient high-speed
compressor (50/60Hz) +
low speed displacer (0.5-

N
=

—

p' 777 R 77/

Piston moves regenerator
from lowT region

Gas passes and cools and V
decreases

More gas flows from high 2HZ)
pressure end - low vibration levels
P, o a * No low temperature seals
— |
@ | or valves
— 1  Well suited for multistage
P Tz systems

Gas expands from high \
pressure to low pressure
Expansionideally isentropic
=» Cooling of the gas that

remains
Windmeier, Cryogenic Technology, Wiley-VCH

DOI: 10.1002/14356007.b03_20.pub2
Timmerhaus, Advances in Cryogenic Engineering,
Springer, DOI: 10.1007/978-1-4757-0522-5



Thermal Conduction



Thermal Conductivity

* transport property, the property of heat
conduction

* sets the relation between a heat current
density and the resulting temperature

gradient dT
] =4q=—K
dx
j: heat current per unit area [Wm]

thermal conductivity [W(Km)']
in general, anisotropic (tensor)

Q AT
“w _ _ 2L

A [

Figure 1—Thermal conductivity of selected materials

10300;i] 1 S A 120 e 1 2 |

T I X, LR

1000

F
E

=]
S

LN B B 1 ) AN N B

=)

— T T T

thermal conductivity (W/m-K)

T T
\ \

=
T

0.01 p=

0.001 41 1 Lt
1 & ’

temperature (kelvin)

http://www.lakeshore.com/Documents/LSTC_appendix|_Lpdf

PSI



Thermal conductivity

Thermal conductivity [W/(m-K)]

Nickel

\

Thermal conductivity (W/m:-K)

Mild steel ]

Cu
Al

|

rcin\}' ’

NEN
]

Titanium —»

100

1055| T T TTI1T1T] T T T 1T —
~ 99.999% Cu annealed Sapphire 3
U RRR-2000 L /- Diamond
104 == —
= 99.999% Al E
E RRR =500 E
3 —
10 EETP and OFHC Cu E
— RRR =50 -
102 - 1100 - F Al
E 6063-T5 Al ~
10" 5052 - 0 Al
= Brass — .
100 = Inconel =
S :
1 ?
10 | G-10 — 7 -
= Fiberglass—epoxy —~ Kapton 3
B Kapton 7]
1072 | L Lol |
1 10 100
Page 19 Temperature (K)

Temperature (K)

300

PSI

Sapphire has a higher
conductivity than copper
in the range of 10-100K but
can be used as thermal
insulator at high or low
temperatures

https://www.isis.stfc.ac.uk/Page
s/CCR-Hot-Stage.aspx



Thermal Conductivity

“banana boat” equation

PSI

The Caribbean

— Rond
Mner e
Ryer

*  Natony! Captal
City or Town

| SRR ... i

0 : T 300 Mies
Q381 Cantngy see




joining materials

Welding (best) heatflow~Area
soldering heatflow~Area
gluing heatflow~Area

pressing (k~p)=>» heatflow ~ Force

low p: use grease
medium p: use indium >1MPa
high pressure: use gold plated

—
o
™

T T T TTT R ‘I,,,IIIIIII|
__\S'
- ilver solder

Soft solder

------ Woods metal

4 ALLOY COMPOSITION
s Soft solder 60% Sn, 40% Pb
7 Woods metal 48% Bi, 13% Sn, 13% Cd, 26% Pb

10° '

Silver solder 50% Ag, 15.5% Cu, 16.3% Zn, 18% Cd

Thermal conductivity (W/m-K)
o

10 100
Temperature (K)

1000

N

Page 21

Thermal conductance (W/K)

102

10"

\\/ 10-40 um
100 N\ e .. mmm—m ]
Pb-Sn solder, 10 um In-Cu ——
| Cd-Bi solder, 10 kg force |
1040 M=, N Stainless—stainless
Cu—Cu
Pb-Sn solder / 50 kg force \

1021

1078

107

10°°

% varnis| —_—— :
% GE 7031 e h’/’ - be
e B/
- A

In-Cu
10 kg force—7

Pb-superconducting —_———— e '[_Sn_soﬁer_ —_———— 7
40-200 - =~ < _ __ Pbsolder T\
Pb-normal A nsoder 00000 T =———a n
40-200 pum, s solder

__________
Solders — P

-
normal stats <
< “TCuAgsolder . 50 kg force

10um

Thermal conductance of solid-solid joints
(A =1 cm? for solder, varnish, & grease joints)

In-Cu—7
50 kg force

0.1

|
05 1 5 10 50 100 500
Temperature (K)

Q(T) = Q(445N4K) = (44I;N) (4.;()7

Ekin

PSI



Thermal expansion

PSI

Page 22 Wong Better OK
(c)

0 - T T
Stainlee‘s_s1 (s)tg'le?ezgwlirspsdei Fe%);i%m
PR =S atoms are arranged in a regular lattice
SN .
e held together by bonding forces
= pp Brass o —
e =>» they have some springiness
< (\0““
< & @é\\\"’&
3 o
< 1.0} <« % |
c S
Q 5
2] kN
= &
s & A . .
s [ 4 | in a real potential
£ average position is energy
()
= dependent (T dependent)
—2.0f . =>» thermal expansion
W@
0 1CI)0 260 300
Té t K . e . . . .
femperature () joining cryo tubing self tightening seal
Electrical Leads
Epoxy Brass
Vaccum , _ l
) Thin-walled tube Solder
feeds gz |— Metalfange | Copper (b}
| Stainless steel

{a)
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Radiative Heat Transfer



Blackbody Radiation

Intensity [ (arb. units)

* Any material emits radiation
* The intensity and wavelength depends on
the temperature

1.00

0.00

Radiance

300K

10 Fultraviolet | visible | infrared Spec.Rad. 000
! (W*m 2+
i
B ! um sl
!
8‘ ~ : .00
) .00
6 =
B ﬁﬂﬂﬂ K .00
4
2
0
0 1.0

Wavelength A (um)

10000 1O
Wavelength (um)

1000.00 10000.00

TO0M00 00

PSI



Radiation Heat Load § PSI

radiation power of a black body radiator

(Stefan-Boltzmann law) P — 0 - A . T4

- P,
Stefan-Boltzmann consta% P=c¢-o- A . Tr-l ¢ — —serey
o = 5.670373 x 107° — Pplack
m?2 K4
A .. Surface Area T C)C)
for a grey (non-ideal) body -273 -173 -73 027 127
1400
~
paint 0.9 — 1000
glass 0.9 & 800
Ny ' Room
Copper polished 0.05 z 600 _;";;’FWW
Copper oxidized 0.85 A, 400 e
Aluminium foil 0.04
.. 0
Aluminium as bought 0.1 0 100 200 300 400

T (K)



Radiation Heat Transfer

heat transfer between surface A, and A,

P... radiation power ~
g Q=A1 P -F) 90— Ag - P -Fy 44

F... view factor
using Ay - Fi0 = Ag-Foyy

Q:J'Al'Fl_}g(Tii—T;)

: Aq
for 2 long — - T4 _ T4
concentric @ 1 4 ﬂ(L _ )( 2 1) o2
cylinders: €1 Az ‘ez ' 10
" 0.01
2
£ 001}
T of hot surface (K) max. heat load %
neglecting T, 4 (mW/cm?)
300 46 0.001 §
77 0.2
00001 b——
4 1.4x10°% (1nW/cm?) 0.001 0.01 0.1
€1




Multilayer Super Insulation

Q

. edA(T) —T})

N +1

N = number of shields

Adding 1 shield will half the heat load
Shield material and thickness is not important
Shields are thermally floating

4

\ / /,J

_7-{;"_.':_'_:-'\
S~ —
To "> o > ] [
e T o o .
Y"\:}::":'\, ~— \'--;i . S -
Ny ST S N ——
T~ NI -
= D o
q_,_./_"m.,_-—-'rii‘*-., - - —
t—/— IT%,,--"\._,_./l/' =" =
T T
e \\ N o

Ti

https://fys.kuleuven.be/iks/wi/WI
TCH/images/photos/cryo_oxf02.jp
g/image_large

PSI



Heat Transfer by Convection



Exchange Gas

hydrostatic limit

| << d; |..mean free path

—— 1.00mbar

1
10 1000.00mbar

kappa (Wm—1K 1)

“}_2 /

10 100
Temperature (K)

thermal conductivity independent
of pressure

Ar 0,
0 20 40 60 80 100
T(K)
Catarino, Cryogenics 48 (2008),17-25

[[cm] = 2.87 x 1072

mean free path for Helium

p[Pa]

Ekin 2006

Pressure (mbar)

mean free path 1cm

1 . H‘IIO I “”1(‘)0
Temperature (K)

T[K]1.147

PSI

free molecular regime

| >>d; |..mean free path

thermal conductivity is a function
of pressure and energy transfer
to the surfaces (accommodation
coefficients)

For 2 surfaces with 1 Surface
at room temperature and
Helium as gas:

0.5

W] =2.1———
QW] 1+0.5%§

A,[m?]p|Pa] AT[K]

forT,, :4K

A 1m?

P : 10"mbar
heat load: 2mW

White&Meeson, 2002



Summary

Cooling mechanisms

Cooling by evaporation
Latent heat
Vapor pressure

We did not talk ...

* Peltier cooling/heating

* Cooling by dilution or solution

* Radiative cooling

* Magnetic cooling (adiabatic

demagnetisation)

Gas cooling Closed cycle cooling
Enthalpy of Cyclic Heat pump
warming gas GM-coolers

Heat Transport mechanisms

o Conduction

Convection Radiation

7
o
o

a|dwes

ol
o
.
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Cold finger cryostats - radiative heat load

Page 32

\

\

PSI

Top flange
(open to access sample)

Rad shield 77K
Assume a sample container @4K

Al length = 60mm; diam 30x0.5mm
Cold tip

Thermal conductivity Al : k = 0.1W/Kcm

Rad. heat load from 77K :0.2mW/cm?

Cylinder surface area: 64 cm?

Heat load : 13 mW 5]
Thermal gradient: AT = Q-

Kk-A

dT =1.6K



Cold Finger Cryostat - Helium Flow

Page 33

To pump and
regulation system

Transfer tube
to storage dewar

|

7 Vacuum

Radiation shi

| Experiment

Pobell, ISBN: 978-3-540-46356-6

Lakeshore flow cryostat

vc-u
Flowmeter

I

storage
Optistat CF dewar

Static

MercuryiTC

Full setup requires a storage dewar and low

loss transfer line

Operates by using a mix of He-gas and He-

liquid
Base temperature ~2.3K

To helium
recovery

Gas flow
pump

Lower Temperature require JT-stage

 PSI



Cold finger cryostats — GM closed cycle

/ Vacuum Pump
O % -— Vacuum Valve

Expander Vacuum Shroud
Radiant Heat Shield e o
_\ {attach to 1st stage heat station) 1 /_ (attach to skirt)

Expander Electrical .__k “E = Sample Holder (attach to 2nd stage heat station)

/Vacuum Shield Power Cable

First stage GasLines
— ) =

heat shield O = = AR N -
/

¥~ Compressor
| second stage

Instrumentation Skirt (fixed to cylinder assembly)

¢ (Cooling Water
...... 5  Supply & Drain)

WWW.arscryo.com

heavier than a flow cryostat

simple to set-up and operate

No liquid Helium infrastructure

For GM-coolers independent on the operation
position (works also up side down)

Tbhase ~4K

((

Page 34



Cold Finger Cryostat — examples

Stirling cooler BERII HZB Nitrogen JT cooler
: Mini refrigerator (AIM Stirling cooler SL400) in a Uses recuperating
the custom made assembly for space restricted compressor or Gas bottle
environments, i.e. between the transmission
and backscattering detectors of ,FALCON® No movin g pa rts
Specifications Extremely fast cooldown
Cold finger 60 .. 320 K Thase <90K

High temperature option
with quartz sample tube 80 .. 450 K
Cooling performance (s70K)=1.5h

N Cryostat (CC-SES5) in front of
transmission detector of E11

Stirling cooler BerylllumFllter FOCUS@PSI

https://www.elliotscientific.com/Kryoz-CryoLab-S-
SP-MSG

Page 35

Operate at <100K



Top Loading Cryostats

Sample Stick with radiation baffles

/ Vacuum vessel _ _
* simple sample mounting

 Sample thermalisation via
exchange gas
 Small thermal gradients at the
sample
Fast sample change
* Slower cooling
Thermal anchor 2 ¢ Easily extendable (Magnet,

( 1.4-300K) sample stick)

Sample position

Thermal anchor 1
(30/77K)

Radiation shield

Sample space filled
with exchange gas

Page 36



Top Loading Cryostats — Cryocooler

\ €—gg sample probe

—

A TIT
Sumitomo

= ?);]/RDKA%
ARl
E _[_]:}Vacuum

jacket

650 mm

>
M
? ‘

Heat
|

~ exchanger
‘{\Ncutron beam/

‘ sample position

S

)

8

3

JT "
] '

]mmr

4

T—— 270 mm
sample space

A S Scientific top-loading cryofurnace (see ref
Page 37 https://doi.org/10.1107/51600576719016704

Thermalise sample stick at 2
positions

Direct connection to the
Cryocooler stages

Fast cooling

Simple construction

Easy to handle and maintain
Needs compressor and
“flex” lines

Precool near the instrument
Thase <~4K

- PSI



Top Loading Cryostats — Cryocooler

650 mm

Thermal
link (Cu) I

\€—3g sample probe
A TIT
Sumitomo
il || RDK-408
— =
— =
e Vacuum
H jacke

Heat

gL

Jh_

> exchanger

[ ——Neutron beam/

sample position

270 mm

sample space

A S Scientific top-loading cryofurnace (see ref
Page 38 https://doi.org/10.1107/51600576719016704

Thermalise sample stick at 2

positions

Direct connection to the
Cryocooler stages

Fast cooling

Simple construction
Easy to handle and maintain
Needs compressor and

“flex” lines

Precool near the instrument

Tbhase <~4K

\
A

PSI

Add JT stage to reach

Tbase <1.8K

Limited cooling power

= slow

Requires small gas handling

[l

NI
[

—

LTI 'LUTHUBHTKHTT%] -

3 \
——He capillary

NI

L

Heat
exchanger



Top Loading Cryostats — Orange Cryostat

THREE WAY
VALVE ™——

COLD VALVE
CONTRCL

BATH —_  pligm Uit
EXHAUST

_ NITROGEN
4+ BATH

HELIUM
~ BATH

RADIATION
~  BAFFLE

4o VACUUM
4 SPACES

VALVE

SAMPLE
HOLDER

HEAT
EXCHANGER

Fig. 2. Schematic of Orange Cryostat.

Page 39

Nitrogen bath for the thermal
shielding

Helium bath serves as
reservoir to cool sample
space via a JT-stage

A load of Helium and
Nitrogen lasts about 1-2days.
Can be operated to 4K
without pump

Fast cooling can be
transported and installed
when cold

PSI
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E. Lelievre-Berna (ILL
Page 42 https://sampleenviro
se-school-eddy-lelievre-b




Bonus
Electric Fields

43 PSI Center for Neutron and Muon Sciences

s PSI

19.01.2026



Electric fields in Matter

induce dipole moment Permanent dipole moment
* E-field applied to Pos and neg part of dipole
atom (neutral) pushes experience forces in
nucleus (+) and opposite directions =
electrons (-) in torque : )
opposite direction Y A
n*- L
)
e > 9
. , €
- — vV—=
_ n* ——— — >
S 4-@ — i"l €
1 — v —
— N _ >
> Polarizability a is anisotropic
Ip| = a|E] p, = E, +a E +a,,E,

p,=a,E +ta E +a,E,

Polarizability a is isotropic

Page 44 p,=a,E, +a, E +aE,



Electric fields in Matter — boundary effects

JONINO,
Medium 1 @A ? @

L
. 0,
Medium 2 Contour C _x

@ O '

Tangential component not affected .

_‘
=

%
[ ]

Parallel Plate Capacitor

Vo—
A
T
L vV
Electric field easyto ) — —
calculate d
Field direction well
defined
Field strength constant
(not on edges)
Field inside the Dielectric
D = ¢epe B

https://hep.physics.illinois.edu/home/serrede/P435/
Lecture_Notes/P435_Lect_10.pdf
http://www.phys.nthu.edu.tw/~hf5/EM/lecture%20n

Page 45
age E, ote/EM04.pdf




Limiting effects — electric breakdown

<< D) Intrinsic breakdown

collision ionisation of conduction

electrons
Most likely area of \ \& e-missior‘1 fr-om bulk impurity centres
field emission from the electrodes.
breakthrough
Field enhancement

Th | breakd
at edge factor 3-4 ermal breakdown

Temperature increases the dielectric

(loss )
Breakdown field Increase in dissipation (Joule heating)
kV/mm
Thermal run away

PTFE 45
Kapton 118 Discharge breakdown
Mylar 75 Porosity in the sample

Sapphire 35

Page 46



Beak down -in exchange gas

10°

 Cooling the samples by conduction limits | | |
applicable field 0 IS S S

* Paschen Law relates beakdown voltage to the d
pressure distance product V- s

* Lowest breakdown voltage of Helium gas: -
300V

e Stressareas (edges) worsen the effect

LT
z

Pressure

103 F

107 16° 161 162 103
pd [Torr cm]

Solutions:

* Experiments in Vacuum L

IH\:‘
« Work on electrode design R\ o (A

* Immerse sample and electrode in stronger 4

dielectric material (oil) I

e.g. Fomblin (fluorinated Grease) for low Neutron I )
background % S———

Page 47



HV stick PSI - Design principles
HV Grounding plug

cable - « Sampleisinstalledin a
Vacuum container
 Parallel plate geometry
e Sampleis mountedto a
sapphire plate
 Alignment of Eto B or

Scattering plane can be
chosen easily

« Sample thermalisation via
Electrodes

* Ground the sample with a 20

Temperature
—
[@)]

RN
o

Page 48

M. Bartkowiak, https://doi.org/10.1063/1.4865406

il
Ag paste

sample

ground

\ ~-HV leads Cu-Bronze

--HV leads Cu
* —vac flange

*—thermal anchor

.
iy 23

2.

grounding plug
* Change polarity by swapginzé »
electrodes 20
* Typ. 50kV/cm (Va5 5kV) i
5_

5 10 15
Time (min)

holder plate
(sapphire or
aluminium)

HV electrode

T |

HV leads Cu-Bronze
vac. flange
HV thermal anchor

HV leads

Sapphire plate

/



HV stick PSI - Sample preparation
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mn} \

becr

Ag paint
electrode

\ Sapphire

Sample
holder

GE varnish

|\~ Sapphire wafer

Electrodes _
E-field in-plane |
~ Sample
Aeld along neutron beam

Electrodes and connections are
prepared with silver paint
Additional materialin the beam (e.g.
cables) are shielded with Cadmium
foil

Multiple Layers of Kapton tape (~3)
are used for electric i1 ion of
Cadmium -




Electric fields in Liquids

Corrosion if electrodes in direct .
contact
Complicated to make a simple .
container

D.Bt HnvedardReofridineyrargrgla®e3 (2021); .

PR T B

-
-
-
-
ot
-

re st
=:
—
1
-

= ‘

Thermal fluid-

Gas stream
Electrodes

B OE oo
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-~

I Io U

2119 + loeq

With 10kV ~1-2kV/cm
achieved in sample

No current flowing in cell due
to insulating cuvettes

Avoid motion of charged
constituents of a solution
apply alternating Voltage kHz
Dipole follows but diffusion is
much slower

Field off

-03-02-0.1 00 01 02 03

03

02
0.1

Field on

0.0

=01
02

.3
-03-02-0.1 0.0 01 02 03
Qx

Smectic A Crystalline
Domain alignment in liquid crystal

03-02-01 00 01 02 03

PSI



THz Pump x-ray probe

Pump probe scheme

A

THz X-ray

Tdt
—>

time

E (MV/cm)

25 00 2.5
Delay (ps) 0.1THz-30THz

* Cold finger cryostat

* No radiation shielding on the THz input
e Sample temperature 5K-500K

* Field maxima of TMV/cm are reachable

Pump pulse
Length: 100fs

Page 51
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Basic definitions

specific heat

Specific heat: the amount of heat
required to raise the temperature
od a solid of mass m by 1 Kelvin

daU 1
= — = — T
v =% mdQ/ d
entropy

a measure of disorderina
system

accounts for the energy
unavailable to do work

Q dH
AS== dS=—

T T |,
“.. handy way to calculate heat
transfers” [G. Walker “Cryocoolers™]

inner energy

total energy contained in a system
energy related to the motion of
system particles

dU = TdS — pdV
= dQ|V = chdT

enthalpy

“heat content”
energy for isobaric process
easier for calculations in flow

systems

H=U+4pV
dH = dU + Vdp + pdV
dH = d@) + Vdp

dH = CpdT




Laws of thermodynamics

oth law

definition of equilibrium

Equilibrium  hot inequilibrium
T, @ T, T, 4= T,
T1 = T2 Tl < T2
dQ =0 40 £ 0
1st law

energy conservation

U..internal ener
» gy

Q..heat added to
system
W..work done by

dU=0Q—-W the system

2nd law

time has a direction

heat flows from high to low temperatures
entropy of an isolated system
approaches

maximum

3" law

the entropy at zero
temperature converges to a
constant value

ASZI”—H) =0 S

T=0 cannot be reached 0
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