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[={J=» Plan for the lectures

* Lecture 1:

1. Why are we doing high pressure experiments?
2. What are the constituent parts?

3. How do we build the cells?

4. Different designs of the cells

5. How to measure pressure?

6. How do we transmit the pressure?

* Lecture 2:

Uniaxial pressure: different methods
Uniaxial pressure: tips and tricks
Pressure and background
Computing background

Combining pressure and field.

MuSR experiments at high pressure
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Uniaxial Pressure Experiments



Hydrostatic versus uniaxial

hydrostatic uniaxial
ressure
pressure P
* No explicit symmetry breaking  Explicit symmetry breaking
* Volume reduction * Volume redistribution
» Multiple couplings modified » Targeted tuning of couplings

» Compression only * Tension also possible



Tuning quantum matter
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Tuning quantum matter
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Tuning quantum matter
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Different ways to do uniaxial pressure

Differential thermal
contraction

+ Simple

- Stress transfer?
- One Stress value
- Background

- Zero Stress?

- Value?

Simple press press with a spring
+Simple + Simple ish
+ Background +/- Value (T-dep?)
- Value ? - Ex-situ
- Ex-situ
Choi, J. et al. Dhital, C. et al.

PRL 128, 207002 (2022) PRL 108, 087001 (2012)

Piezo-electric devices

)‘e

[

+ Push-pull
+ In-situ
+ Value

- Background?
- Zero Stress?
- Complexity

l. Vinograd et al.,
NCommes, 15, 3277 (2024)



Implementation with a motor



In-situ uniaxial pressure device

Tuning in-situ
Push-pull capabilities
Separate F, T readout

Thermal expansion
decoupling

Large distance motion



In-situ uniaxial pressure device. Implementation

stepper motor control

Disc spring packages for fine precision
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Control integrated into PSI and DESY beamlines R
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Pulleys

Separate thermometer

Sample

holder ~__

Sample

Thermometer

Easy switching between prepared samples
Review of Scientific Instruments 94, 013906 (2023)
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Sample holders — push and pull

Push and Pull holder Gluing Positioned in the device

Advantage — very well controlled push/pull. Drawbacks — long samples needed, more complex



Challenge — where to look?

Only +- 5 degrees available from the magnet

& peak
Tilt is only +- 5 degrees
zero
X intensity
Need careful mounting
of the crystal no fit
possible
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Push only sample holders — allows for arbitrary rotation!

Version 1 — more forgiving for Version 2 — better alignment,
non-ideal samples by putting assuming perfectly parallel sample
more stycast inside

Enables rotation and fixation



Challenges — thermal effects

* Long rod of 130 cm. Top at 300 K. Bottom at sample T 300K
Spurious signals can be observed:

* High-energy X-rays shoot through the sample holder
Can observe sample inside the glue

» Solution — Make use of the different timescales ~130 cm
for measurement and equilibration

* Implementation: Scan Height before and after the real measurement
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Application 1: High-Tc Cuprate Superconductors



Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on structure
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Uniaxial pressure effects on charge order



Uniaxial pressure effects on charge order
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Intensity maps and background
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Intensity maps and background
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Intensity maps and background
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Uniaxial pressure effects on charge order
Charge — order peak
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NCommPhys 7., 271 (2024)



Uniaxial pressure effects on charge order
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Uniaxial pressure effects on charge order
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NCommPhys 7., 271 (2024)
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CDW evolution
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Fuu Phase Dlagram CDW is suppressed with uniaxial stress, but remains constant above critical value

Optimally-sized charge order islands lead to the highest T
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Full Phase Diagram

CDW is suppressed with uniaxial stress, but remains constant above critical value

Optimally-sized charge order islands lead to the highest T,
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Neutron application: Skyrmion lattices



In-situ uniaxial pressure device.

£ A800Qan

Example 2: SANS

B (T)

06| field-polarized B || (110)
| — =B, =B,

05 L = oB, ®B,

04

" s, MnSi

0.2

0.1

0.0!

20

conical X ‘/ A phase

paramagnetic

22 24 26 28 30 32 34

T(K)



In-situ uniaxial pressure device. Example 2: SANS

£ AE®0AQR

06| field-polarized B || (110)
L ‘B,; . BA.‘
05 L | n oB, =B,
04
e s, MnSi
o
02l conical X ‘ A phase
“', :- G g ‘.'-g.yq.,_,.j"

paramagnetic

22 24 26 28 30 32 34
T(K)
FO,C - Created Skyrmion
e lattice with strain !

- Following Chacon 2015, but we keep T and B constant and
just apply uniaxial pressure



In-situ uniaxial pressure device. Example 2: SANS

£ A800Qan

06| field-polarized B || (110)
| — =B, =B,
0.5, Sea = oB, ®B,
04
£ . s, MnSi
o)

paramagnetic

02l conical x ‘/ A phase
i R

0.0!

20 22 24 26 28 30 32 34

T(K)

~ - Created Skyrmion
lattice with strain !

Cd shielding

Gd203 paint

- Following Chacon 2015, but we keep T and B constant and
just apply uniaxial pressure



Uniaxial Control
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High Pressure and background management
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Collimation, shielding and material choice

Table 1. Neutron transmission and mechani-
Cd shieldi ng cal yield strength of various materials used
for high-pressure cells in neutron scattering.

Gd203 paint
CuBe 15 37 %
NiCrAl 20 27 %
TiZr 12 65 %

Alumina 25 68 %0




Adaptive neutron optics

Incident beam Sample Aperture [REREIRLERY
@sample

| n .
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Making the best of what we have

3D-printed neutron-absorbing Collimator
for a clamp cell. Tested at CAMEA

3D-printed neutron-absorbing collimator for PE press

Masako Yamada
Andrea Plank
Christine Klauser
Uwe Filges
Zhanwen Ma
Sascha Thirsam




High Pressure and background management - DPsi



Calculating the response
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High Pressure Database and Calculations D Psl



Setup phase

DATABASE
PREPARATION

Experiment planning

v AL
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Figure 1. The graphical representation of the ON-PRESS project. The backbone of the database will be the
technical preparation for data storage, codes for the instrument-to-database pipeline and the establishment of
unified formats and protocols. The repository will then be populated with a series of entries measured by us and
gathered from literature. Subsequently, it will be continuously open so that all research infrastructures and individual

researchers can upload the data. It will be set up in a way that the important data can be downloaded for experiment
planning and evaluation as well as simulation and training purposes.



High pressure science with muons
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Top fixation bolt

Rustem Khasavov
Matthias Elender

Sample volume

tion bolt

tom fixaf

Khasanov, JAppl. Phys. 132, 190903 (2022)

({J=» High Pressure Research with Muons

&1 Sample holder

Zurab Guguchia
Hubertus Luetkens
+ TU Dresden

Ghosh et al., RSI 91, 103902 (2020)
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Muon Spin Rotation

Proton beam with
production target

Parity violation in pion decay: \
only left-handed neutrinos exist
-> Polarized muons!

p,~29.8 MeVic

“DC Separator”

e+

b polarized

4.1 MeV
Range in matter:
~150 mg/cm?

PRODUCTION TARGET

E x H velocity selector I
also rotates the spin |
26 ns i

- =
B —>e +V, +V,

Parity violation in muon decay:
positrons preferentially emitted
in the direction of muon spin

-> time evolution of muon spin!




High pressure science with muons

“Decay Muon Beam” (u* or w), ~“80% polarization
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s © decay section p,, analyzer

P H
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E m

& p,, selector ,

(e.g., 150 MeV/c) s

“Backward” p
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clean, range ~4 g/lcm?

“Forward” p
~160 MeV/c
contam. with e*and




Muon Spin Rotation
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Muon Spin Rotation

u* detector
e’ detector
(backward)




Muon Spin Rotation

e’ detector
(forward)

e’ detector

(backward)

" detector

time (us)




Muon Spin Rotation
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Can we do DAC experiments with muons?

\/ > hep-ex > arXiv:2111.05788 a)
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High Energy Physics - Experiment

Ty

[Submitted on 10 Nov 2021

Science Case for the new High-Intensity Muon Beams HIMB at PSI

M. Aiba, A Amato, A. Antognini, S. Ban, N. Berger, L. Caminada, R. Chislett, P. Crivelli, A. Crivellin, G. Dal Maso, S. Davidson, M
Hoferichter, R. lwai, T. Iwamoto, K. Kirch, A. Knecht, U. Langenegger, A. M. Lombardi, H. Luetkens, F. Meier Aeschbacher, T. Mori, J.
Nuber, W. Ootani, A. Papa, T. Prokscha, F. Renga, S. Ritt, M. Sakurai, Z. Salman, P. Schmidt-Wellenburg, A. Schoning, A. Signer, A.
Soter, L. Stingelin, Y. Uchiyama, F. Wauters

In April 2021, scientists active in muon physics met to discuss and work out the physics case for the new High-Intensity Muon Beams (HIMB) project at
PSI that could deliver of order 10°%\s™" surface muons to experiments. Ideas and concrete proposals were further substantiated over the following
months and assembled in the present document. The high intensities will allow for completely new experiments with considerable discovery potential
and unique sensitivities. The physics case is outstanding and extremely rich, ranging from fundamental particle physics via chemistry to condensed
matter research and applications in energy research and elemental analysis. In all these fields, HIMB will ensure that the facilities Su.8 and CHRISF on
PSI's High Intensity Proton Accelerator complex HIPA remain world-leading, despite the competition of muon facilities elsewhere.

Comments: 116 pages, 42 figures
Subjects:  High Energy Physics - Experiment (hep-ex); Materials Science (cond-mat mirl-sci); High Energy Physics - Phenomenology (hep-ph)
Citeas:  arXiv:2111.05788 [hep-ex]
(or arXiv:2111.05788v1 [hep-ex] for this versi
https-//doi.org/10 48550/arXiv 2111.05788 [: ]

)

OngO'ng ve rteX detectlon expe rlmentS (1 mm Spot) Figure 31: Sketch of the vertex detection scheme for future SR instruments.
Shutdown of SINQ and SmusS in 2028
Upgrade of one of the beamlines soon after




Uniaxial cell for muons
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