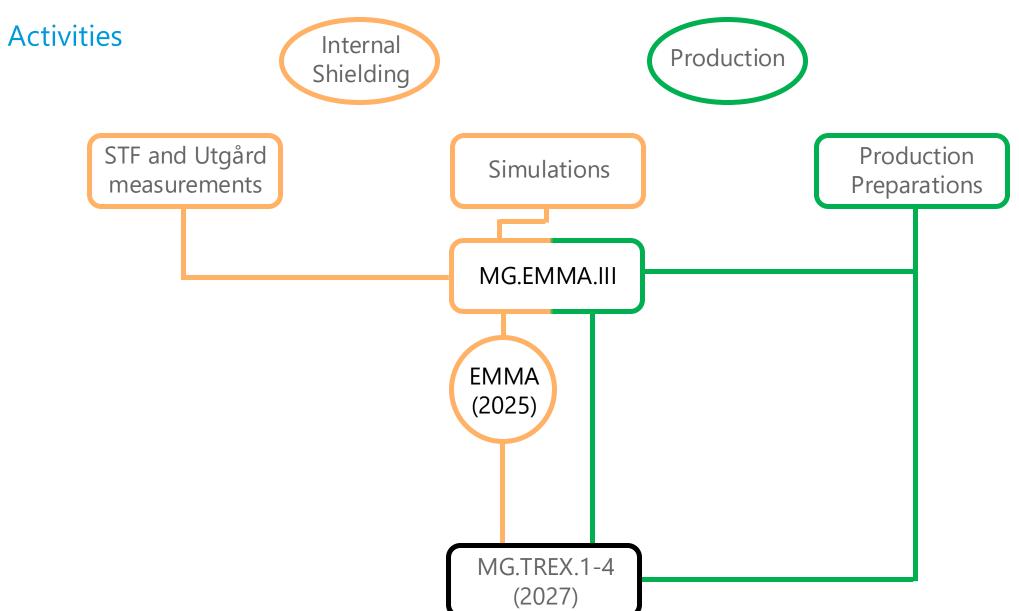


Project overview

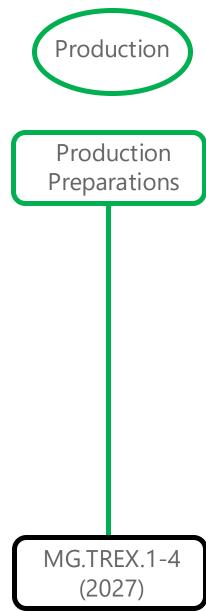
PRESENTED BY ALEXANDER BACKIS, DAVID HANSSON, JOSEF EID AND JOHN ANNAND 2025-12-04

Agenda



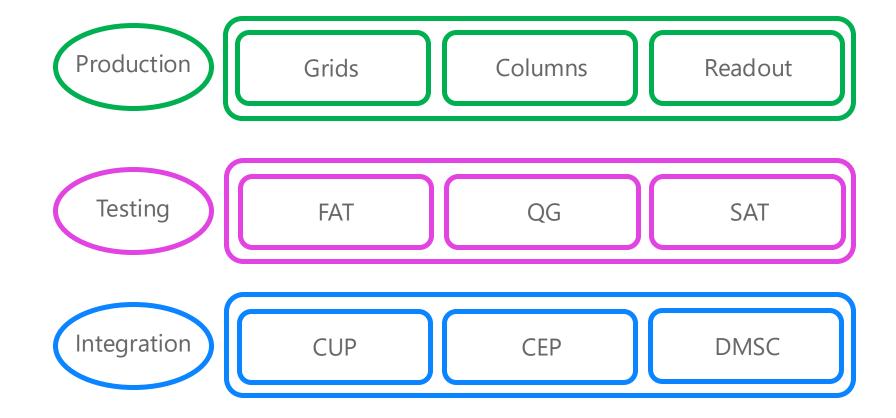
- 1 Overview
- 2 Updates
- 3 Production
- 4 Planning
- 5 Publications
- 6 Summary

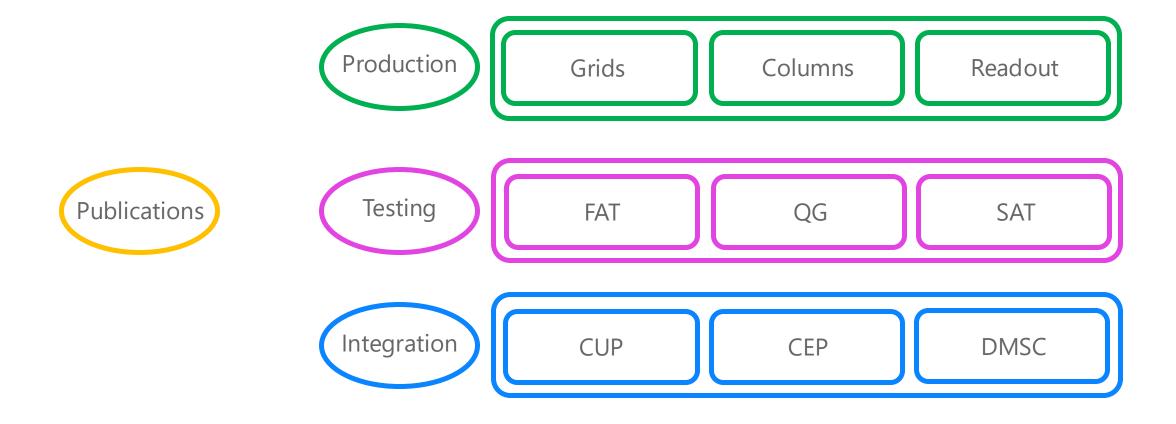
1.


Activities

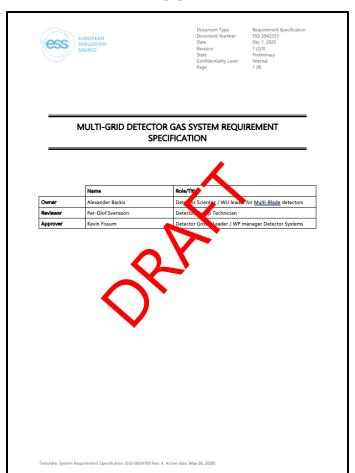
Activities

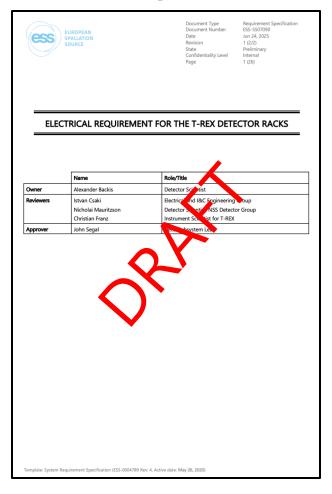
Activities


Activities


ess

Activities


Activities


Activities

CUP

CEP

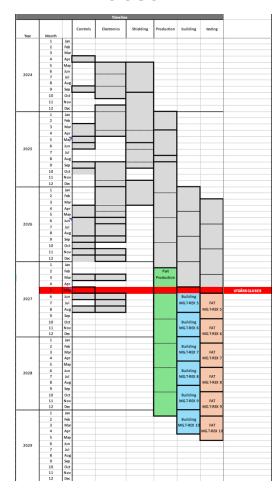
DMSC

ICD FOR THE T-REX DETECTOR							
		D. I. Will					
	Name	Role/Title					
Authors	Alexander Backis Michael Christiansen	Detector Scientist					
		Scientific Software Engineer					
Owner Reviewers	Alexander Backis Francesco Piscitelli	Detector Scientist Detector Scientist					
REVIEWELS	Morten Jagd Christensen	Lead Software Science					
	Worten Juga emisterise	Lead Sold Sold					
	Mo Aquane	Instrument Scientist					
Approvers	Mo Aouane Kevin Fissum	Instrucent Scientist Deletor Grow Lead					
Approvers		Desertor Groy Lead					
Approvers	Kevin Fissum						
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					
Approvers	Kevin Fissum Vincent Hardion	Decetor Grow Lead ECDC Grow Leader					

2.

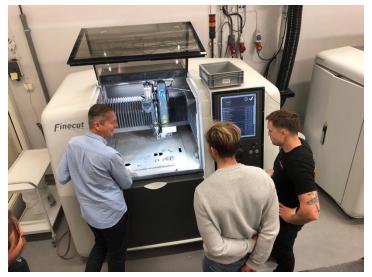
Updates

SAC presentation


Funding for remaining 60% detector coverage

Non-labour

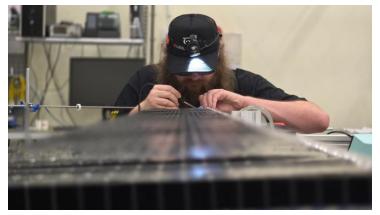
	Category		Item / Service	Minimum quantity	Spare
Column		Normal blades	Radiopure Al sheets	1068	107
			Etching	1068	107
			Al-B4C targets	24	3
		Radial blades	Al-B4C sheets	636	64
_			Micro Waterjet	22176	2218
_			Ni-plating	22176	2218
-				3168	317
_		Grid blocks	End shielding		
_		Grid blocks	Standard	3024	303
			Cut-out	144	15
_			Cutting triple normal blades	22176	2218
			Assembling grids	3168	317
			Glueing grids	3168	317
			Ultra low cap head screw	12672	1268
			Hexagon socket cap head screw	6336	634
			Wire	13	- 7
			Backbone	36	4
-			Backbone insulator	36	4
-			H-spacers	6264	627
-			End-grid spacers	144	15
			Carriages	144	15
-				36	- 1
-			Column stopper	36	
			End-grid bracket		-
_			End-grid bracket bottom	36	
	End grids		End grid Front	72	
			End grid Back	72	- 1
	Wire PCBs	Signal PCB	Pad PCB	36	
			Component PCB	36	4
			HV PCB	36	
	Backbone PCB		Тор	36	4
			Centre	36	-
			Bottom	36	4
1		'	Aggregator PCB	36	- 4
Cablin	z HV		SHV cables	72	8
Cabiiii			HV strip	36	- 4
-	Data				
	Data		Flat cables	180	18
			Samtec cables	144	15
			HDMI cables	72	8
			Optical fibres	48	
	Slow control		Ethernet cables	7	1
Front-e	nd Assistor box		Hybrids	72	8
			Mini-assistors	18	:
			Power distributor	18	7
			Pent-house box PCB	36	
			12U rack	6	
			Power supply box	6	
			Pent-house box	18	
	Interface box		Network switch	1	
	III.C./ace Dox		12U rack	6	
			Patch panel - optical fibres	1	
			Patch panel - HV	3	
	E-box		Interface PCB	36	
Back-er	ıd		Master rack + power distribution panel	1	
			UPS 11 kVA (main unit + 2 batteries)	1	
			PDU+dongle	2	
			Network switch	1	
			Fibre patch panel	4	
			RMM	1	
			Server RMM	1	
LINE					
HV			CAEN 12ch power supply Gas system	3	


Labour

Contracts signed with Finepart, HP Etch and Provexa

Finepart

HP Etch


Provexa

Glasgow contract signed

Duration

January 2026 – December 2027

Scope

- Column assembly and wiring
- FAT and QG
- Installation
- SAT
- Peer reviewed publications

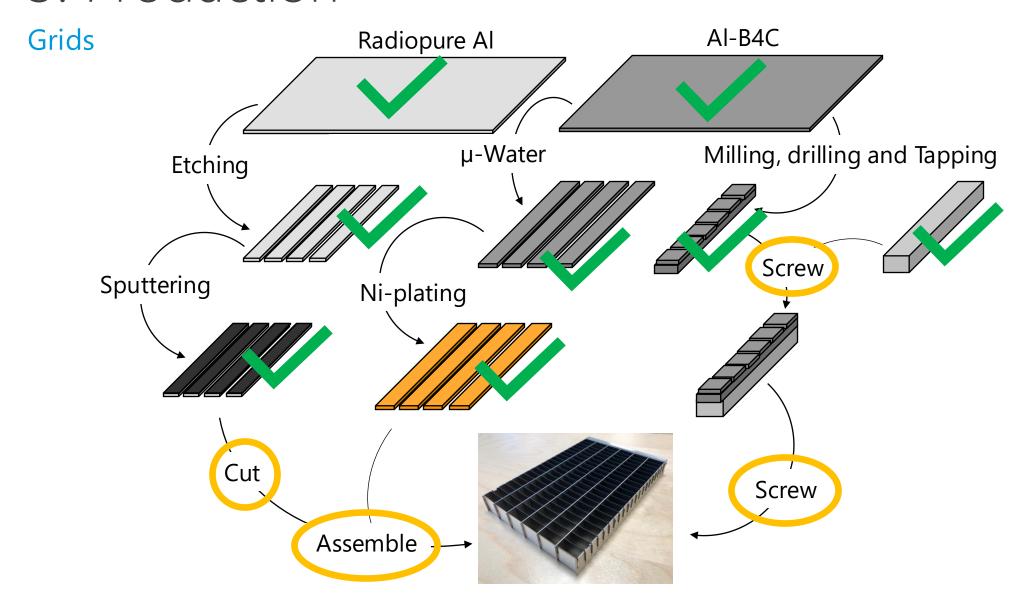
Erlis transitions to permanent contract

Parental leave

Initial parental leaveJanuary 1 -> February 9

Acting MG work unit leads

- Francesco Piscitelli
- Chung-Chuan Lai



3.

Production

Grids

Al-B4C sheets delivery

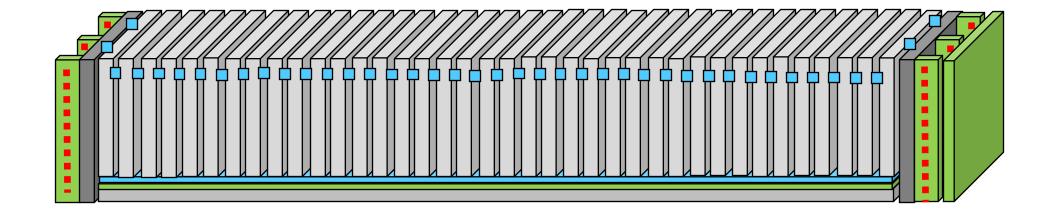


Al-B4C sheets quality assurance

Grids

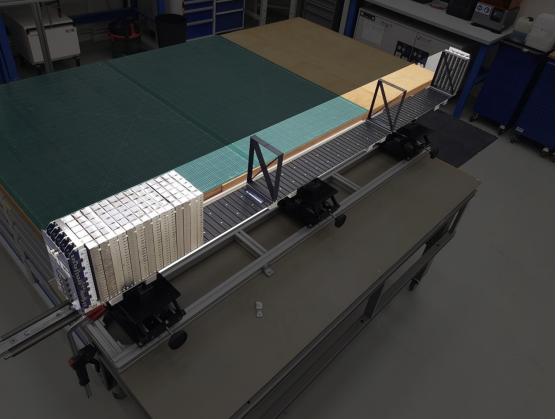


Grids



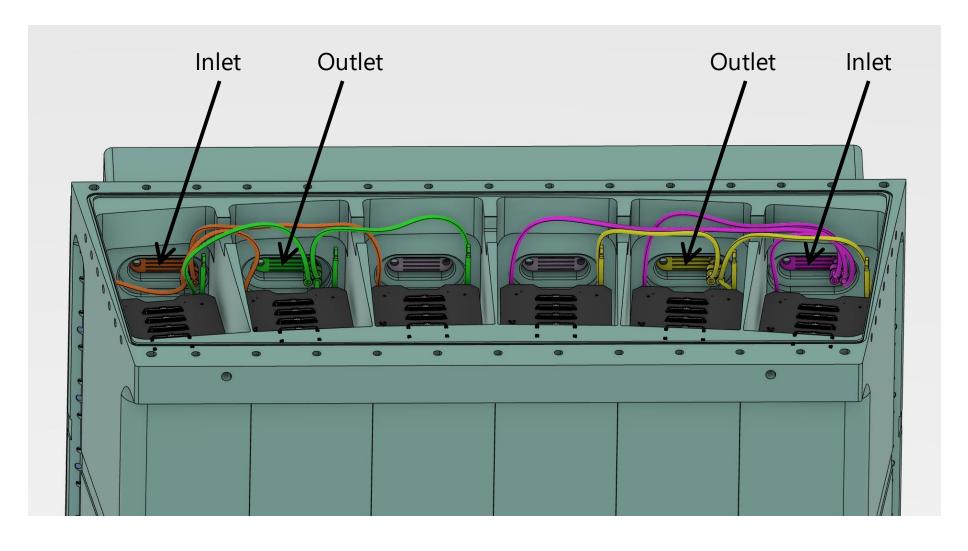
Micro water jet

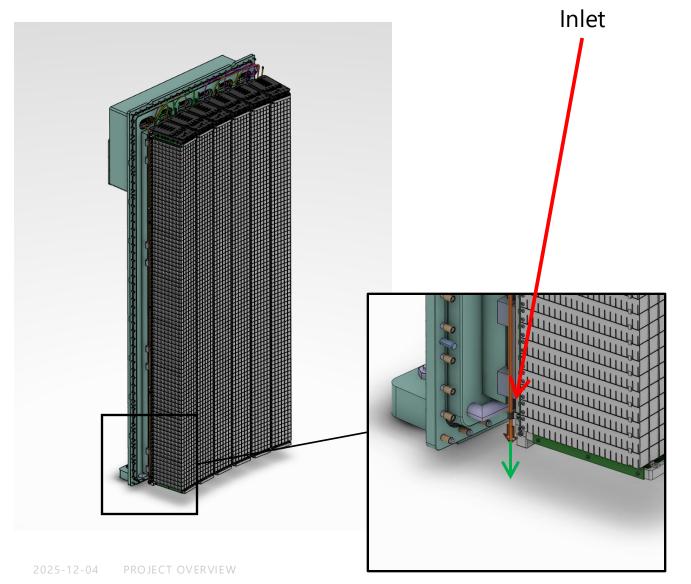
Columns

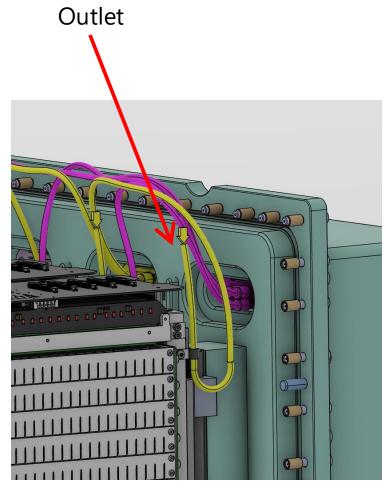


Columns

Columns


Columns

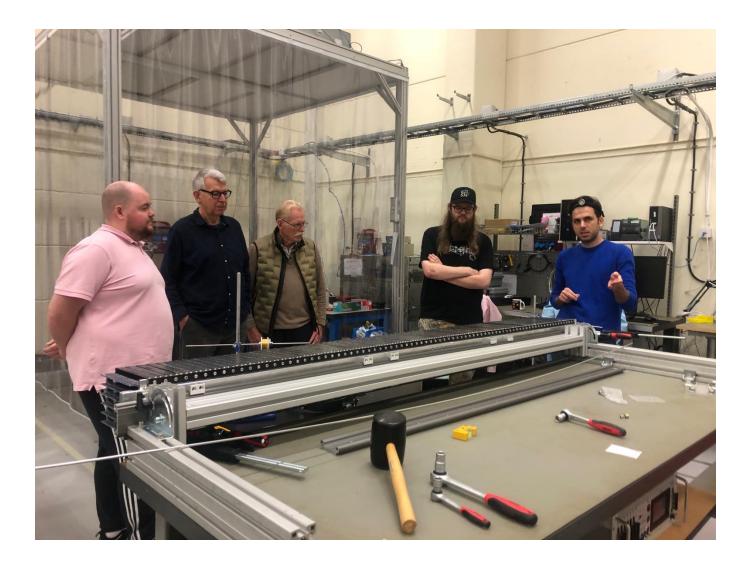

Columns



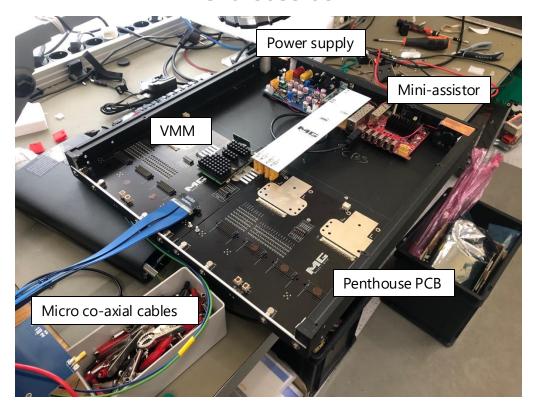
Columns

2

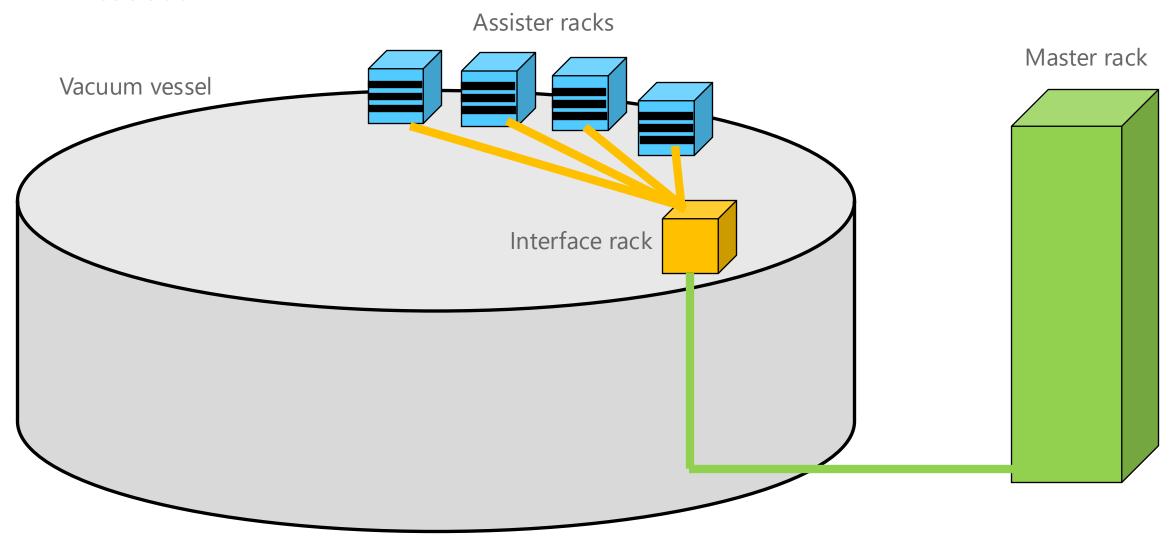
Columns



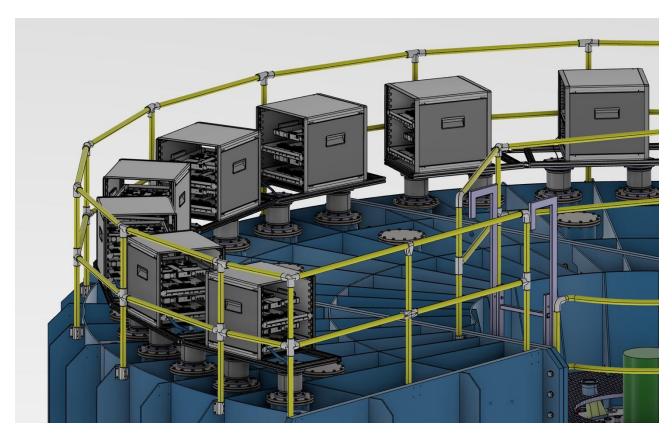
Columns

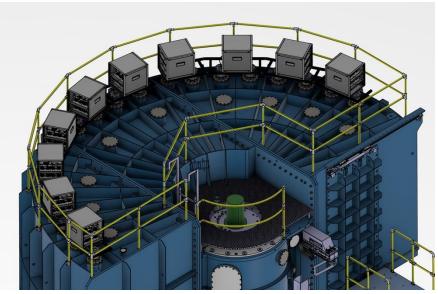


Readout

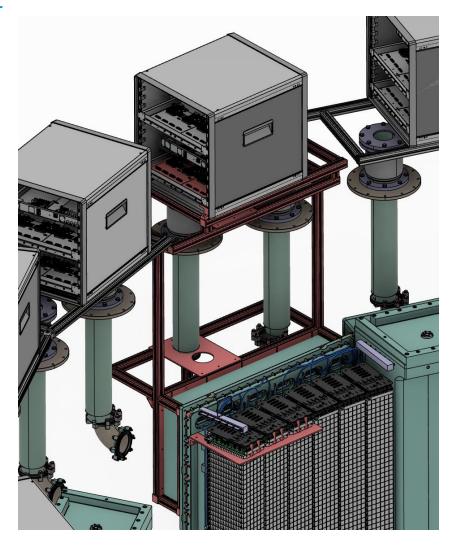


Penthouse box


ess

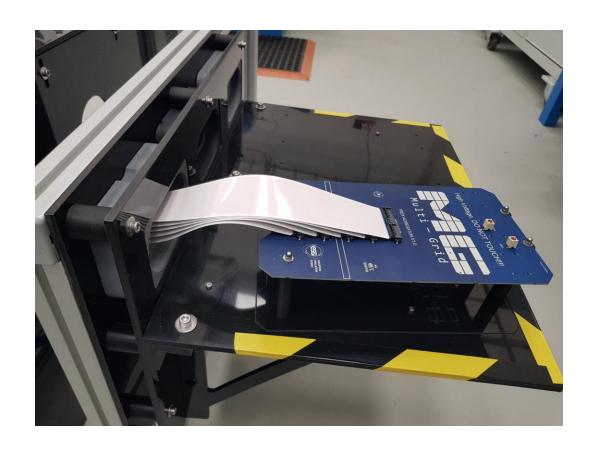

Readout

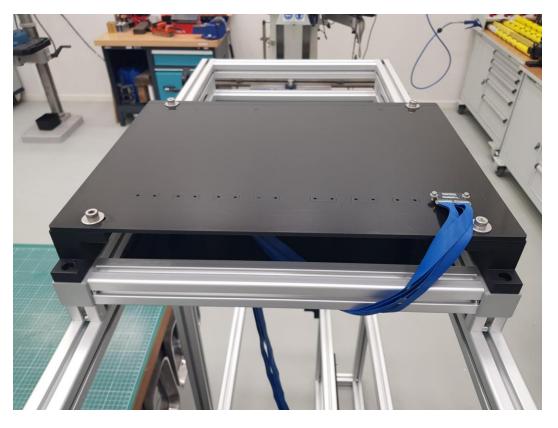
Readout



Readout

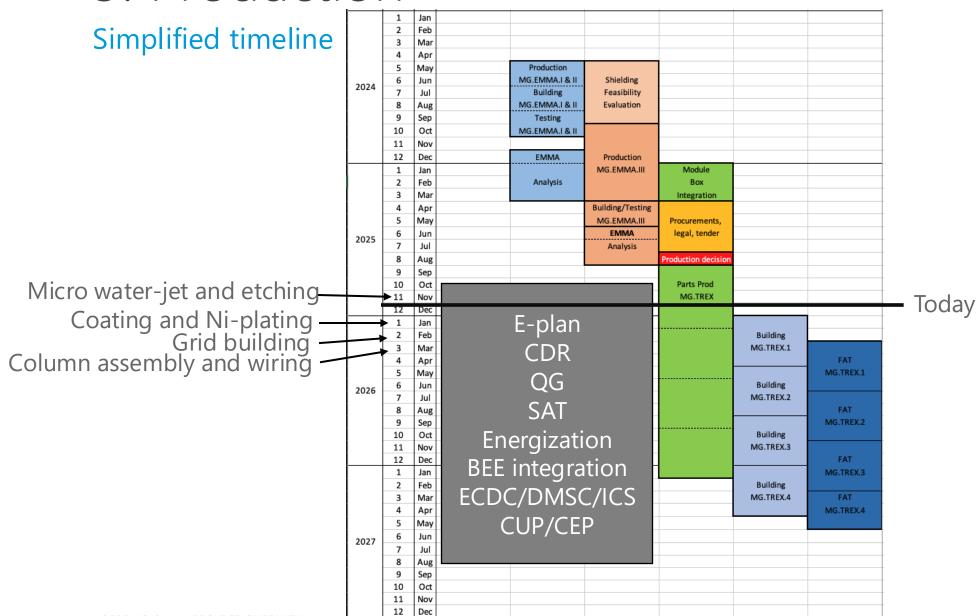
Readout





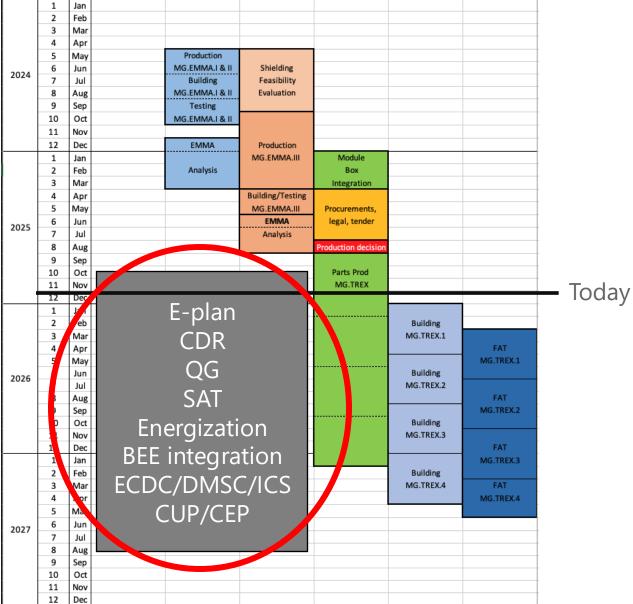
3. Production

Readout



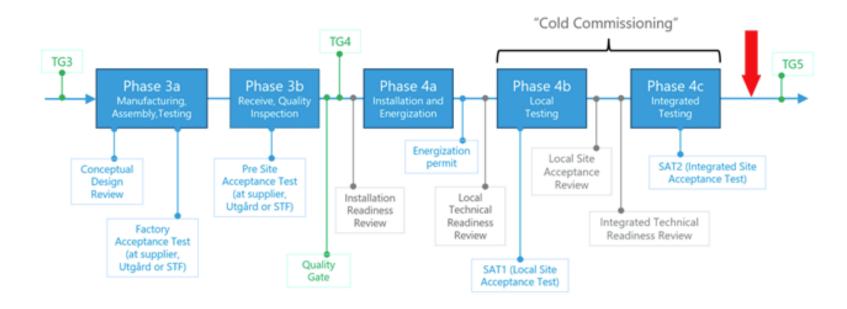
3. Production

38


4.

Planning

Detailed timeline of BEE/integration


40

Detailed plans updated and linked

- DetG EICC planning template implemented
- Linkes to Instrument, CEP, CUP etc updated

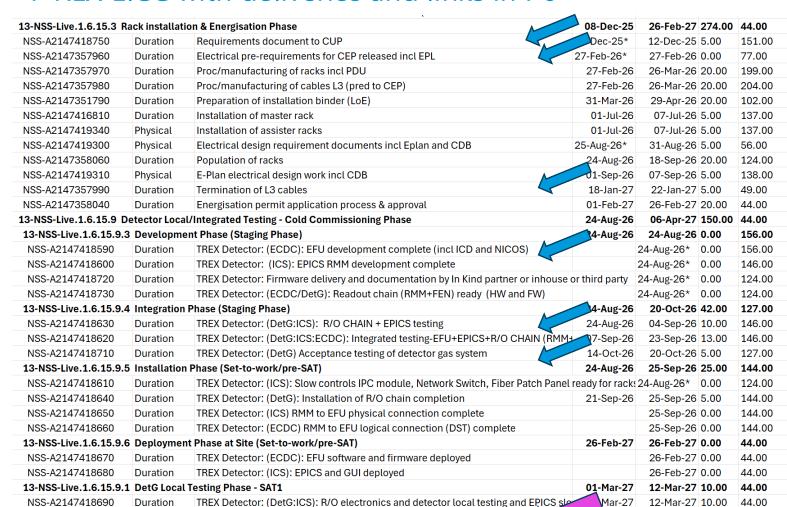
- ESS-0060987 HIGH LEVEL STRATEGY FOR THE COLD COMMISSIONING OF DETECTORS
- ESS-5620506 DETECTOR ENERGIZATION, INTEGRATION, AND COLD COMMISSIONG

ess

T-REX EICC with deliveries and links in P6

13-NSS-Live.1.6.15 MultiGrid TREX (T3) Detector (WUL Alex)				13-Sep-27	724.00	449.00	
13-NSS-Live.1.6.15.1 Prototypes MG.EMMA & MG.MAPS			03-Jun-24 A	02-Mar-26	385.00	788.00	
NSS-A2147353720	Duration	Shielding feasaibility evaluation	03-Jun-24 A	01-Nov-24 A	37.00		
NSS-A2147351660	Duration	Production, building, testing Prototype EMMA	03-Jun-24 A	29-Nov-24 A	201.00		
NSS-A2147382900	Duration	Analysis Prototype EMMA	02-Dec-24 A	30-Apr-25 A	95.00		S
NSS-A2147351680	Duration	PDR EMMA 1 (obsolete)	02-May-25 A	(0.00		S
NSS-A2147351670	Duration	Production, building, testing Prototype EMMA 3 (MAPS)	04-Nov-24 A	28-May-25 A	134.00		
NSS-A2147357940	Duration	Module Box integration design	03-Feb-25 A	18-Aug-25 A	114.00		S
NSS-A2147382910	Duration	Evaluation methods/tendering - final design decision	18-Aug-25 A	01-Oct-25 A 3	33.00		S
NSS-A2147382890	Duration	Analysis Prototype EMMA 3	18-Aug-25 A	27-Nov-25 A	74.00		
NSS-A2147351690	Duration	PDR EMMA 3	28-Nov-25 A	(0.00		
NSS-A2147351800	Duration	Submission/preparation of documentation for CDR 2	28-Nov-25 A	02-Feb-26 2	20.00	702.00	
NSS-A2147351730	Duration	CDR 2/Sub TG3	03-Feb-26	02-Mar-26 2	20.00	702.00	
13-NSS-Live.1.6.15.2 Production MG.TREX.1-4			02-Oct-25 A	30-Aug-27	427.00	449.00	
NSS-A2147351740	Duration	Building training	27-Nov-25 A	06-Feb-26 4	42.00	174.00	
NSS-A2147358010	Physical	FEE (DAQ)	27-Feb-26	02-Jun-26 6	63.00	186.00	
NSS-A2147351700	Duration	Parts production for MG.TREX1-4	02-Oct-25 A	01-Feb-27 3	302.00	174.00	
13-NSS-Live.1.6.15.2.1 Building MG.TREX.1			09-Feb-26	17-Jul-26 1	109.00	649.00	
NSS-A2147351750	Duration	Building MG.TREX.1	09-Feb-26	17-Apr-26 4	48.00	174.00	
NSS-A2147358070	Duration	Qgate preparation	Links	+21-May-26 3	39. 00	649.00	
NSS-A2147358020	Duration	TREX Detector FAT Module 1 MG.TREX.1	L 9-Mar-26	01-Jul-26	77. <mark>00</mark>	174.00	
NSS-A2147407590	Duration	Site Arrival Inspection (SAI) of box 1 and Integration of 6 columns Inc. box 1 at Utgår	Instru	iment	20.00	187.00	
NSS-A2147407580	Duration	Shipping of box 1 with 6 columns to site (MG.TREX.1) (from Utgård)			2.00	174.00	
NSS-A2147351780	Duration	Quality gate review and approval MG.TREX.1	22-May-26	17-Jul-26	40.00	649.00	
NSS-A2147419320	Duration	Installation of detector vessel + MG.TREX.1 at site (Installation with columns	06-Jul-26	17-Jul-26	10.00	174.00	
13-NSS-Live.1.6.15.3 Rack installation & Energisation Phase				26-Feb-27 2	274.00	44.00	

13-NSS-Live.1.6.15.9.2 DetG Integrated Testing Phase - SAT2


Duration

Duration

NSS-A2147418700

NSS-A2147418740

T-REX EICC with deliveries and links in P6

TREX Detector: (DetG): Integrated testing of detectors complete & SAT2

TREX Detector: DetG + EFU + EPICS testing End to End at site

Links to CEP, CUP...

T-REX .1 Integrated test (CC) done 6 apr-27

44 days float

2025-12-04 PROJECT OVERVIEW

15-Mar-27

15-Mar-27

06-Apr-27 15.00

06-Apr-27 0.00

06-Apr-27 15.00

44.00

44.00

44.00

5.

Publications

Overview

- 3 Publications in the pipeline
- .Test of VMM3A readout of MG
- Neutron interactions in MG structural materials
- Alpha background from grid materials
- 2 further publications planned
- •Description of the Geant4 and Garfield++ simulations
- •Report of the 2025 Runs at EMMA...effect of Al/B₄C composite radial blades on internal scattering.

arXiv:2510.01981v1 [physics.ins-det] 2 Oct 2025

5. Publications

ess

The Application of VMM3A Readout to Multi-Grid Neutron Detectors

The Application of VMM3A Readout for Multi-Grid Neutron Detectors

A. Backis^a, F. Piscitellia, D. Pfeiffer^a, J.R.M. Annand^b, M. Aouane^a, K. G. Fissum^a, K. Livingston^b, G. Mauri^c, D. Raspino^c

*Detector Group, European Spallation Source ERIC, SE-221 00 Lund, Seeden *School of Physics and Astronomy, University of Glasgow G12-8QQ, Scotland, UK *ISIS Facility, Ratherford Appleton Laboratory, Hurwell Compus, Oxfordskire OX11 0QX, EX.

Abstract

The T.REX neutron spectrometer at the European Spallation Source will use Multi-Grid Technology, which is a voxelesed proportional counter relying on $^{10}\mathrm{B_4C}$ coatings to detect the scattered neutrons. Measurements of the position dependence of pulse-height and relative detection efficiency of a Multi-Grid prototype of the T-REX spectrometer are presented for two different schemes of signal-processing electronics based on the VMM3A ASIC and CREMAT technology. These measurements, intended to test the suitability of VMM3A for readout of the T-REX Multi-Grid, are compared with Monte Carlo simulations based on the Garfield++ and Geant4 tool kits.

1. Introduction

Multi-Grid (MG) technology for detection of thermal or cold neutrons, originally developed at ILL [1], will be used for the T-REX bispectral chopper spectra meter to be installed at the European Spallation Source (ESS) [2]. MG is a vertical stack of grids, each a rectangular lattice of normal and radial Al blades (Fig. 1). The grids form the cathodes of a voxelised proportional counter (VPC), with wires strung vertically through the centres of each voxel providing the asodes. The normal blades are coated at ESS with 10 B-enriched (97%) B₄C [3], and neutron capture in this film of B₄C produces 4 He and 7 Li residual nuclei, one of which escapes the film into the VPC gas (Λr -CO₂ in the present case) generating a signal.

This work describes a comparison of signal properties for two alternative schemes to read out the charge collected from the MG electrodes. This was performed using the EMMA thermal neutron beam [4] at the ISIS neutron spallation source in the UK.

*Corresponding Author
Email address: john.annand@langov.ac.uk (J.R.M. Aimand)

- •Comparison of VMM3A and CREMAT readout of T-REX Multi-Grid prototype.
- •Fine-beam scans across MG voxels at EMMA
- •Submitted to arXiv 2nd Oct 2025
- Submitted to NIM-A
- •Referee's report largely positive
 In summary, this paper presents a very precise and
 objective characterization of the MG prototype
 complemented by an in-depth simulation of the processes
 taking place in the detector. This is a high-quality paper but
 the conclusion should focus only on the results presented in
 the paper.
- •Reply and amended manuscript sent to authors for comment/correction 27th Nov. 2025.

ess

47

Neutron Interaction Properties of Structural Materials for Multi-Grid Neutron Detectors

Neutron Interaction Properties of Structural Materials for Multi-Grid Neutron Detectors

A. Backis*, C.-C. Lai*, M. Aouane*, P.P. Deen*, K.G. Fissum*, J.R.M. Annand*, K. Livingston*, D. Raspino*

*European Spallation Source ERIC, SE-221 00 Lund, Sweden
*School of Physics and Astronomy, University of Glasgow G12 8QQ, Scatland, UK
*ISIS Faculty, Ratherford Applicton Laboratory, Harwell Campus, Oxforthire OX11 0QX, UK

Abstract

The T-REX neutron time-of-flight spectrometer at the European Spallation Source will use Multi-Grid Technology, which relies on thin B_4C coatings on the Al blades of the grids to detect scattered thermal neutrons. Following a Monte Carlo study of internal shielding to suppress neutron multiple scattering in T-REX, the neutron transmission and scattering properties of 12 shielding-material samples have been measured at the ISIS spallation neutron source. Neutron transmission was measured on the EMMA beam line at wavelengths 0.5–4.7 Å, using a 2D-position-sensitive, neutron GEM detector, while neutrons scattering was measured for 6 of the samples at the Merlin spectrometer, at wavelengths 0.72, 1.28, 1.85 and 2.41 Å. The present tests show that a B_4C /Al composite material, plated with Ni to stop intrinsic alpha background, is an effective neutron absorber, suitable for incorporation in the Multi-Grid structures which detect the neutrons in inelastic neutron spectrometers.

1. Introduction

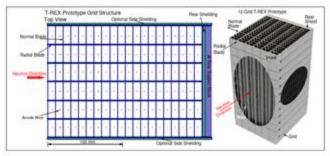


Figure 1: Left: prototype T-HEX grid. Each voxel has an internal dimension of 23.5 mm (a) by 24.0 mm (y) by 9.5 mm (a). Right: 3D view of a 12-grid T-REX prototype, with outer sections cut away to reveal the internal structure.

Comparison of various possible radial-blade materials Neutron transmission measurements at EMMA Neutron scattering measurements at Merlin Comparison to Geant4 simulations

- •Submitted to arXiv, 5th Nov. 2025
- •Likely target journal NIM-A

arXiv:2511.02512v2 [physics.ins-det] 5 Nov 2025

^{*}Corresponding Author

Email address: jobn.asnand@langov.ac.uk (J.R.M. Annand)

ess

Alpha Background in Multi-Grid Neutron Detectors

Alpha Background Multi-Grid Neutron Detectors

Draft V1

A. Backie", C.-C. Lei", K.G. Fissum", G. Zuzel, M.Czubak, J.R.M. Annand", K. Livingston", A.N. Other,"

"European Spallation Source ERIC, SE-221 00 Lund, Sweden

^bM. Smohchowski Institute of Physics, Jagistlimian University, Lajasiemica 11, 30-348 Krakim, Poland, ^cSchool of Physics and Astronomy, University of Glasgow G12 8QQ, Scotland, UK

Abstract

Alpha emission from actinide impurities in Al is a source of background counting rate in Multi-Grid type detectors of thermal neutrons. The alpha emission rates from samples of Al and Al/B4C composite were measured on a large-area, low background spectrometer.

1. Introduction

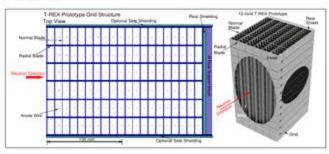


Figure 1: Left: prototype T-REX grid. Each voxel has an internal dimension of 25.5 mm (x) by 24.0 mm (y) by 0.45 mm (x). Bight: 3D view of a 12-grid T-REX prototype, with outer sections cut away to reveal the internal structure.

Alpha emission from trace actinide impurities found in Al is a source of background in gascous detectors of thermal neutrons, which employ neutron capture on 10B. This produces 4He and 7Li, one of which is detected. Al is the main structural material in most neutron spectrometers of this type. Here this background has been investigated for prototypes TRP-1 and TRP-3 of Multi-Grid [2] columns for the T-REX spectrometer at the European Spallation Source (ESS) [3].

The Multi-Grids are stacks of grids, each a rectangular lattice of normal and radial Al blades (Fig.1). The grids form the cathodes of a voxelised proportional counter (VPC), with wires strung through

- •Comparison alpha emission from radiopure AI, AI/B₄C composite and Ni-plated AI/B₄C
- •Measurements at large-area ionisation drift chamber in Krakow.
- •Geant4 simulation of effect of Ni-plating thickness
- Background measurements T-REX prototypes. Al or Ni-Al/B₄C radial blades
- Await information and plots from Krakow

^{*}Corresponding Author Renail address: John.assand@lasgov.as.uk (J.R.M. Annual)

Simulation update

- Include more materials from Ncrystal data base which models thermal neutron interactions in crystaline and other substances: e.g. Al, B4C, Al/B4C composite, Ni, Al₂O₃, PPMA, V, Steel.
- •More realistic model of alpha emission from ²³⁸U and ²³²Th for assessment of Ni-plating effectiveness (for alpha background article).
- •Option to include Al₂O₃ spacers which set the gap between grids.
- .In progress...
- •More realistic model of T-REX boxes which contain the Multi-Grid columns
- •More realistic model of support structures which hold the MG columns in place
- Inclusion of structures around the T-REX sample
- •To be derived from T-REX CAD drawings
- .Wish list...
- •Calculations of the neutron-beam time structure at the T-REX sample
- •Specification of the beam monitors to be used at T-REX

6.
Summary

6. Summary

- Parental leave in January, FraPi and Lai are substitutes
- Almost all essential contracts are in place, only IPAB left
- Production has started
- Detailed plan of EICC done and linked
- Publications are underway

6. Summary

- Scientists: Francesco, John, Ken, Kevin, Lai and Me
- Mechanical Engineers: David
- Electronics Engineers: Aleksandr and Angel
- **Technicians:** Kyle, Ross, Erlis, Alexander and Marina
- Project Management: Susanna
- Procurement: Charlotte and Mirko
- **Legal:** Johan
- Coordinator: Josef
- Planner: Lena
- Administrative support: Zsuzsa
- **Technical support:** Roy, Lisa, Fabio S, Jack and Doro
- **Documentation Engineers:** Fabio F

