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Luminosity in colliders

The performance of a collider is typically evaluated by the luminosity () achieved. Itis a
proportional factor between the cross section (o p) and the number of interaction per unit
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Analytically the luminosity writes,
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with S the geometric factor that counts for the loss of luminosity due to the crossing scheme
(other correction factors are omitted here).
Is this effect neglilible? Some numbers!

LHC 4 TeV (2012) — S=0.84.

LHC 7 TeV (2015) — $=0.82.

LHC 7 TeV (2023) — §~0.37

CLIC 1.5 TeV (?2?) — S=0.10.

Way to recover from this loss? Crab crossing
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Crab Cavities to recover Luminosity

m The crab cavity concept was first proposed by R. Palmer? for linear collider to recover head on
collisions and avoid luminosity loss. A crab cavity is a deflection cavity operated with a 90°
phase shift (crabbing).

m However for LHC was only considered from late mid-2000. First beam physics reviewed paper,
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m The voltage needed depends on the relative position CC-IP, crossing angle and RF frequency.
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CCin HiLumi LHC

m One of the key ingredients of the
HiLumi LHC is the use of crab cav-
ities to recover £. Tests with beam
in the SPS are planned from 2016.

m 3 compact crab cavities under de-
sign. Different geometries. 3 MV,
400 MHz.

m Due to lack of axial symmetry
they present high order multipo-
lar components of the main field.
The S part of the multipoles is zero
within the accuracy of the calcula-
tion i.e. ¢prpmul¢ = 0. But in phase
with the main crabbing mode.

m Analytical evaluation of the optical
aberrations showed a non neglili-
ble tune shift for QWCAV.

m Two scenarions considered:
Hips-Vip1 and Hyps-Hipy .

Figure: RWCAV (left), QWCAV (middle), 4RCAV (right).

Table: RF Multipoles for Ve =10 MV in [mTm/m™1].

MBRC RWCAV QWCAV 4RCAV
b 55 0 114 0

b3 7510 3200 1260 900

ba 82700 0 1760 0

bs | 2.9x10% | -0.52x10% | -0.15x108 | -2.44x108
bg | 52x10° 0 -1.66x10° 0

by | 560x10% | -140x108 0 -650x108
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Single RF Multipole Element Implementation in SixTrack

m First time ever long term stability studies including CC RF multipoles.

m They were modeled and included in the SixTrack code up to octupolar component.

Normal Quadrupole
, wz
AX = —byxcos ( — +ps+ ¢’RF,quad)
wz
Ay = boycos ( - ¢s+ ¢’RF,quad)
by . (wzZ w
AS = ? (x2 —y2) Sll’l(T + s +¢RF,quad) ?
Normal Sextupole
, 2 wz
AY = -b3 (¥ -5P) cos(7 +¢s +¢RF,sext)
wz
Ay =2b3xycos (— +os+ ¢RFsext)
b
AS = 3 (3 -3x2) sm( +¢s+¢RFsext) -
Normal Octupole
, wz
Ax' =-by (x3 —3xy2) cos (7 +¢s +¢RF,oct)
wz
AY = by (3:%y-7) cos(— +¢s+¢RFoct)

by
A6 = — (x —6x2y2+y Sln(_+¢s+¢RFoct)%

Skew Quadrupole
, wz
AXx =-Dbpycos (— + s+ (I)RF,quad)
z
Ay =-byxcos (— +¢s +¢RFquad)
w
AS = ngysm( +ds+ ¢RFquad)
Skew Sextupole
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Ay = b3 (y? - %) cos ( - s+ ¢RF,sext)
b . (wz
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w
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HL-LHC DA Simulations w CC RF mult: H-V xing scheme

10° turns DA [o]

Dynamic Aperture is the boundary of the stable motion in circular accelerators. It is determined
by massive tracking campaigns where particles are tracked during 10° turns at different initial

amplitudes and angles.

Two scenarios: 1) perfect machine and 2) with errors and corrections are applied to IRs and ARCS

(60 seeds).

In a Hyps-Vip; crossing scheme the overall tune shift due to the by is cancelled for the QWCAV.
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HL-LHC DA Simulations w CC RF mult: H-H xing scheme

m In a Hyps-Hjp; the large tune shift will produce resonance crossing with a significant drop of the

DA (~110)
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Conclusion: high order multipoles can affect significantly the LHC DA either direct tune shift (by) or
feed down effects. First rough alignment tolerances (simulations not shown here) provided,

= QWCAV (only HV) |dx,y| < 2 mm
= RWCAV (HH or HV) |dxy| < 0.75 mm
= 4RCAV (HH or HV) |dy y| < 2.7 mm



Compact Linear Collider (CLIC)

Multi-TeV e*-e~ collider (2 beam acceleration — accelerating gradient 100 MV/m)
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Traveling Waist Regime in CLIC FFS

We observed in simulations an unexpected loss of luminosity of AL/ %}, 0440n ~-10%. After careful
study this loss was explained from the evolution of the beam waist during the collision or traveling
waist regime?. This effect is explained from the aberrations induced due to a z-dependent off-center

horizontal orbit in the Final Focus sextupoles produced by the crab cavity.

ow,
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Figure: Left case w/o E-z correlation from the linac and right with correlation.

4VE. Balakin et al. (Branch Inst. Nucl. Phys., Protvino, 1992).



Traveling Waist Scheme at CLIC Final Focus

Traveling waist in motion!
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Fixing the problem

Three options: 1) change the main linac+BDS orientation to revent the crossing angle, 2) place the CC
in a more convenient place from optics point view and 3) adding a second CC (less prefered).

150 — 105
/’m 0.8

100 —
-4 095‘—;
75 <
o
L 1 09
E N
3 L 4 085
'_>'§ 3 Nominal S\z
/2«
2 o L {08
2 L 4 075
-50
07
75
065
-100
-125 05
055

-150




Fixing the problem
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Conclusions

m Crab cavities are proved to be indispensable to recover head on luminosity in
the presence of crossing angle.

m CCs are one of the main ingredients of the next HiLumi LHC. CC beam
dynamis are progressing accordingly.

m CC design should aim for low high order multipoles to avoid optics
distortions.

m The crossing scheme at CLIC previously a free parameter is now fixed to
avoid luminosity loss. This study was recently approved by PRSTAB for
publication.
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