

ESS BILBAO

In-kind contribution: status and prospectives

by Marita Mosconi

ESS Bilbao

- Official representation of Spain in the ESS ERIC.
- Coordination of the Spanish inkind contributions to ESS ERIC
- Connection to the Spanish industry
- > 56 professionals
- > Activities on
 - ECR ion source, LEBT, RFQ
 - **MEBT** (beam diagnostic & control)
 - RF systems
 - Target
 - Instruments

Scintillation detector laboratory

- ✓ Selection of scintillators:
 - ZnS(Ag), ZnS(Cu,Au,Al)
 - ⁶Li glass: GS20, KG2
- - 6 MeV alphas
 - soft gammas

Estefania Abad Project Manager

Marita Mosconi detector scientist

Carlos Cruz electronics

Crew

Xabier Gonzalez, Gorka Mujika mechanics

Victor Guijarrubia, Yolanda Fernandez IT

Monica Huerta simulations

Jon Bilbao electrical installations

Roberto Martinez data analysis

Detector development: proposed in-kind contribution

Identification of the best technology for neutron detection based on **scintillators** for applications in **diffractometry**

- 1) Evaluation of the mature technologies:
 - ZnS(Ag) coupled with PMTs by clear fibers with coincidence encoding
 - ⁶Li-glass Anger cameras
 - ZnS(Ag) coupled with PMTs by WLS fibers with coincidence encoding
 - ZnS(Ag) coupled with SiPMs by WLS fibers
- 2) Evaluation of the feasibility of visualization of single events of neutron detection in scintillators by silicon sensors
- 3) Direct coupling of scintillators to SiPMs (or with a short light guide)

SCIENTIFICA prototype

Company which constructed the **detector of**the ISIS instrument PEARL

Commercial position sensitive detector with DAQ suitable for fiber encoding mounting: PEARL pixels (clear fibers)
WLSF pixels

Evaluation of the performances and characterisation in accelator facilities or reactors

Research Motivation

Problems of the current scintillation detectors for diffractometry:

- ⁶Li-glass Anger cameras
 - i. Expensive
 - ii. Low gamma rejection
- ZnS and fibres
 - i. High dead time (from 20 μs to 100 μs)
 - ii. Expensive 2d detection

Can pixelated light detectors improve performances?

- > Can μm pixilated sensors (cameras) allow large detector units?
- Can arrays of SiPMs be used with short light guides?

Scintillators: ⁶Li-ZnS(Ag)

- 0.45 mm maximal thickness
- Up to 55 % efficiency for 25 meV neutrons in a grooved layer
- Fast rising, but afterglow up to several tens of μs
- 160000 blue photons per neutrons

PMT pulses, **direct coupling**: n/γ discrimination (Am/Be source)

Scintillators: ⁶Li-glass

- 1 mm thick: 77% efficiency at 25 meV
- Quite sensitive to γ-rays
- 6000 UVA photons per neutron

Time-of-flight n/γ discrimination with pulse shape discrimination

PMT pulses, **direct coupling**: n/γ discrimination (Am/Be source)

Optical coupling / light collection

- I. Direct (optical grease-cement)
- II. Light guides
- III. Fiber optic tapers
- IV. Clear light fibers
- V. Wave length shifting fibers
- VI. Lenses

Visualisation through highly pixelated silicon sensors

Neutron detection in ZnS(Ag) intensified by MCPs and viewed by a 200 fps camera

B W Miller at al. Nucl. Instr. Meth. A, 767, 2014

Dead time and n/γ discrimination in pixelated sensors

Pixelated light sensors in the market:

- Camera sensors (μm pixels, slow if cheap)
- SiPM (mm pixels, as fast as PMTs)

Work plan

- a) Characterisation of different neutron scintillators with respect to different acquisition techniques
 - i. Efficiency
 - ii. n/γ discrimination
- b) Visualisation with camera sensors
 - i. Selection of the best light collection
 - ii. Sequence of pictures
 - iii. Triggered acquisition
- c) Characterisation of different SiPMs
- d) Coupling SiPMs to scintillators directly and with light guides.

Optical tests

Visualisation of 6 MeV alphas in 250 μ m ZnS(Ag) 2:1 by Scintacor

- ✓ Point Grey camera mounting a Sony IMX252 121 fps
- ✔ Optics:
 - Focal length 8 mm, working distance 8 cm
 - Focal length 3.5 mm, working distance 0 mm
 - FOT 3:1

Scintillation light: 8 mm lens

Scintillation light: 3.5 mm lens

Scintillation light: FOT

Conclusion and outlook

- Scintillation light observed with a cheap camera sensor
- Developing suitable optics (simpler optics system with lenses or FOT)
- Triggering the camera on neutron detection events
- Testing more camera sensors
- Developing a DAQ for an array of SiPMs

