

Status of Irfu-ESS discussions on french contribution under the responsibility of CEA

Lund, 10th october 2012

Florence Ardellier (Head of Irfu-SIS)

&

Antoine Daël (Head of Irfu-SACM)

Thanks to Pierre Bosland, Guillaume Devanz & Bruno Pottin

Irfu Summary

- Introduction
- Early contacts
- Existing collaboration in P2B & ADU: technical results
- The CEA-Irfu ESS Working Group for IKC
- Workpackages under discussion
- List of actions : to define
- Conclusion

Early Contacts (May 2009)

- 1. Since the very beginning of the ESS project CEA-Irfu has been very active to contribute to the LINAC Construction, in parallel with the contributions of the french neutron scientific community.
- 2. Early guide lines for the P2B, ADU & IKC have been already defined in fall 2009 and are still valid
- 3. An industrial meeting has been organised in Paris in march 2010
- 4. The cooperation agreement has been signed.
- Amendment n° 1 to the Cooperation Agreement in the field of neutron and accelerator sciences to the ESS design phase is ready to be signed

Existing collaboration in P2B & ADU: technical results

- 1. Project 1 : Injector realibility test
- 2. Project 2:352 MHz power coupler bunker
- 3. Project 3: 8 equipped and tested superconducting cavities
- 4. Project 4: contribution to the TDR
- 5. Project 5 : engineering design effort
- 6. Project 6 : (IPNO) Cryomodule spoke
- 7. Project 7: (IPNO) New infrastructure for SRF cavities
- 8. Project 8 : ECCTD (CEA-Irfu & CNRS-IPNO)

The progress of these projects is monitored by ad hoc franco-suédois follow up committee

Irfu CEA-Irfu &ESS Working Group for IKC

- Stephen Molloy , Lead Cavity Engineer
- Christine Darve, Lead Cryomodule Engineer
- David Mcgannis, RF group leader

2. CEA-Irfu:

- Florence Ardellier (Head of Irfu-SIS)
- Antoine Daël (Head of Irfu-SACM)
- Pierre Bosland , CALHI Project Leader at Irfu
- 3. Steering group has been proposed on the 2nd october @ Saclay

Road Map of the ESS & CEA-Irfu IKC Working Group

- Establish a schedule for the preparation of the IKC
- Establish a short list of Workpackages of common interest
- Establish a mapping of these Workpackages in the PBS/WBS of the ESS Linac Project and select relevant milestones
- Define priorities and options , commonly approved
- Review and approve the ESS rules for costing in order to share a common view on the IKC values both for manpower and material costs
- Follow the guidelines and support ESS efforts in view of cost reduction & « design to cost »
- Propose an IKC list to the ad hoc « ESS & CEA-Irfu IKC Steering Committee », an IKC list together with procurement rules
- Maintain a close collaboration with CNRS partners and the relevant coordination in the definition of the CNRS & CEA french IKC.
- Follow common quality rules for the technical annexes

Meetings of the Working Group

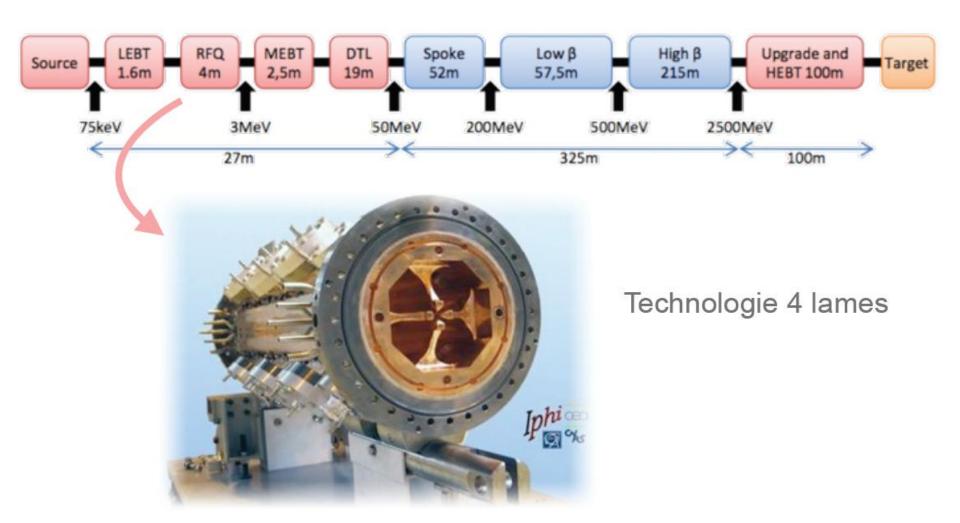
- September 20th call conference
- September 28th call conference
- October the 2nd meeting at Saclay
- October the 10th (today) meeting at Lund

Irfu LIST OF Proposed WORKPACKAGES for IKC 1. ESS LINAC front End:

- Full responsibility of RFQ with RF power test
- Option: functional test of ESS front end at Saclay (with partly existing infrastructures)

2. High Beta cavity cryomodules:

- Full responsibility of design, components and test of the components
- Full responsibility of integration at Saclay site
- 3. Option: contribution to Medium Beta cavity cryomodules in the frame of an international collaboration leaded by ESS
- **4. Option**: other contributions in CC, mechanical design and beam dynamics.


Irfu LIST OF Proposed WORKPACKAGES for IKC 1. ESS LINAC front End:

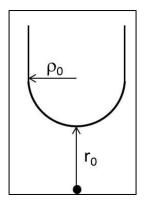
- Full responsibility of RFQ with RF power test
- Option: functional test of ESS front end at Saclay (with partly existing infrastructures)

2. High Beta cavity cryomodules:

- Full responsibility of design, components and test of the components
- Full responsibility of integration at Saclay site
- 3. Option: contribution to Medium Beta cavity cryomodules in the frame of an international collaboration leaded by ESS
- **4. Option**: other contributions in CC, mechanical design and beam dynamics.

Irfu 1. RFQ cavity @ 352 MHz

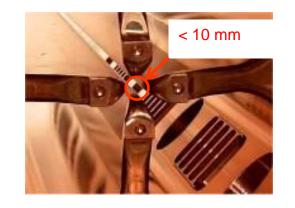
RFQ

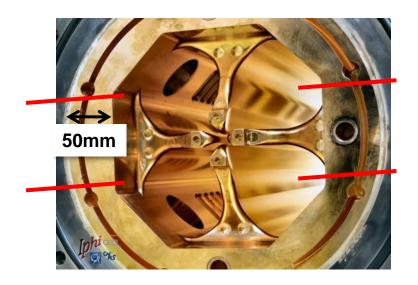

We use the technological heritage with three RFQs: IPHI, SPIRAL2 for GANIL and LINAC4 for CERN

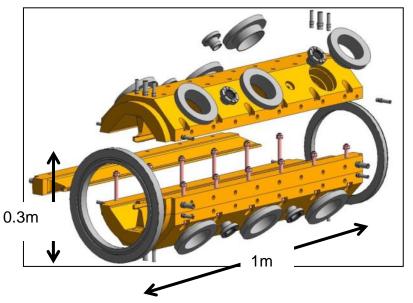
Main parameters of the ESS RFQ

ESS RFQ Parameters	Value	Units
Frequency	352.21	MHz
Beam energy	3	MeV
Peak beam current	75	mA
RF duty cycle	7.5	%
Length	4.95	m
Vane voltage	from 80 to 120	kV
r0	from 3.445 to 4.737	mm
ρ0	3	mm
Max field on pole tip	34	MV/m
Kilpatrick value	1.8	

RFQ modules construction

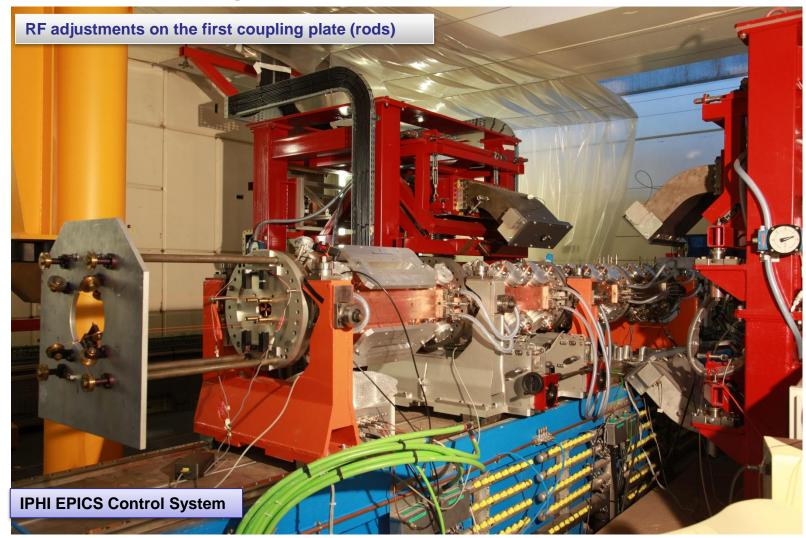

(based on experience)

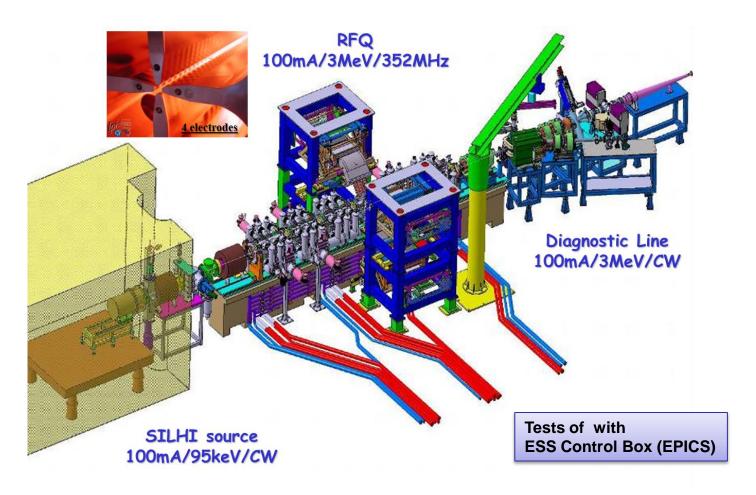

Each module is built in 4 parts corresponding to 4 electrodes with very tight tolerances:


few microns/1m.

→ machining and alignment are very important.

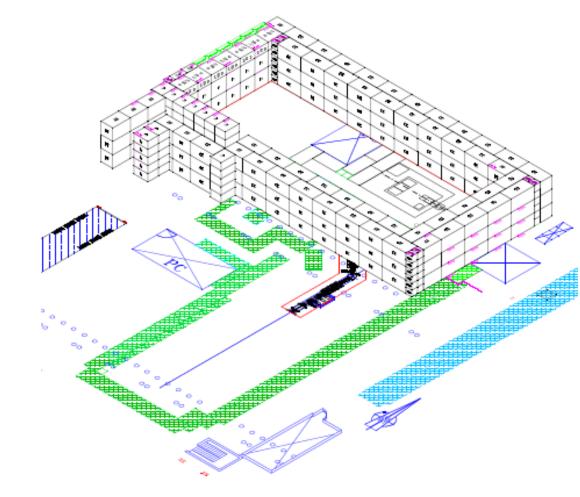
ASSEMBLY by BRAZING : precision about 10µm




Irfu RF measurements for 4 modules

RFQ construction requires a lot of RF measurements at different stages

Irfu IPHI: facility for the ESS tests



The CEA will operate the IPHI-RFQ with relevant parameters for the ESS (duty cycle, peak current, pulse length) to provide a feedback for the reliability of the future **ESS RFQ**

- After completion of Spiral2
 & IFMIF tests existing bunkers can be refurbished
- 2. Watercooling is available for RFQ test at full power
- 3. Electrical power is available for full power RF test
- 4. Installation of ECR source for commissionning of the entire injector is very welcome
- 5. CC : EPICS with ESS Control Box

Irfu LIST OF Proposed WORKPACKAGES for IKC 1. ESS LINAC front End:

- Full responsibility of RFQ with RF power test
- Option: functional test of ESS front end at Saclay (with partly existing infrastructures)

2. High Beta cavity cryomodules:

- Full responsibility of design, components and test of the components
- Full responsibility of integration at Saclay site
- 3. Option: contribution to Medium Beta cavity cryomodules in the frame of an international collaboration leaded by ESS
- **4. Option**: other contributions in CC, mechanical design and beam dynamics.

Objectives and benefits of ECCTD

Preparation of ESS construction phase

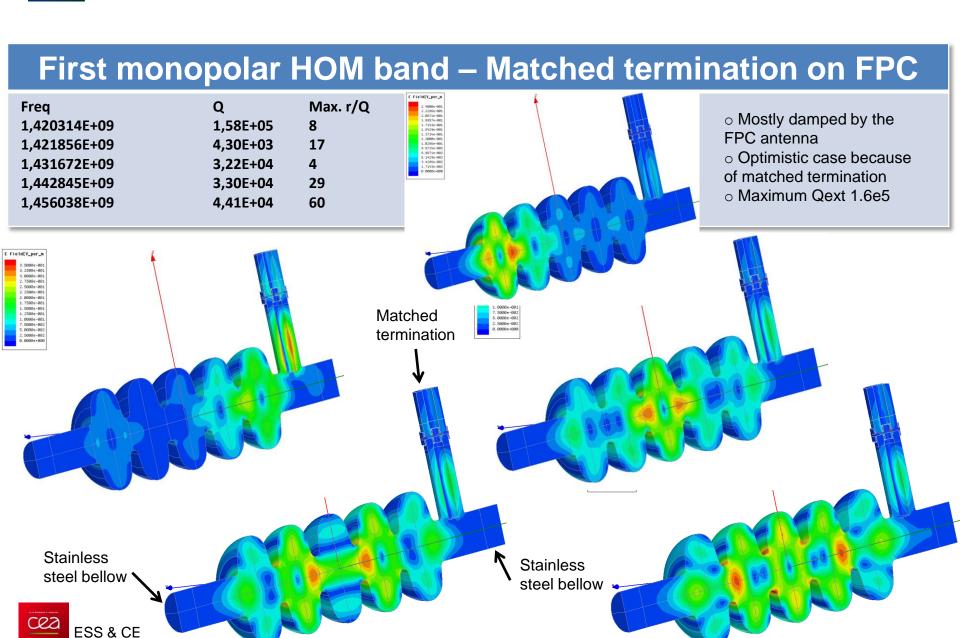
Teams training

Infrastructure preparation

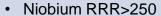
Development of processes

- Design, fabrication and fine-tuning of ESS clean room and assembly tooling in the clean room
- Design, fabrication and fine-tuning of ESS assembly tooling outside of the clean room
- IPNO/Irfu synergy in P2B phase and in preparation of the construction phase

Elliptical superconducting cavities

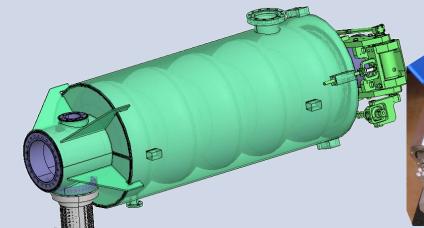

- 5-cell cavities, bulk niobium
- two beta families
- frequency = 704.42 MHz
- performance specifications (T = 2 K):

beta	Eacc VT (MV/m)	Eacc Linac (MV/m)	Qo @ nominal Eacc
0.70	17	15	5e9
0.90	20	18	6e9


Peak field specifications: Epk < 40 MV/m

Irfu ESS Linac : example of present studies

Mechanical design



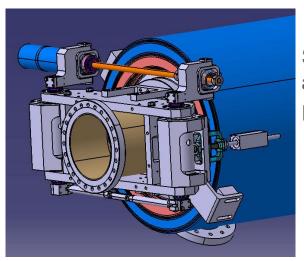
Titanium He vessel (no brazing, marginal differential shrinkage with Nb, compact FPC port)

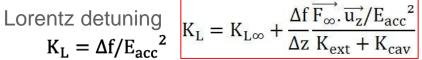
Single titanium hydroformed bellow

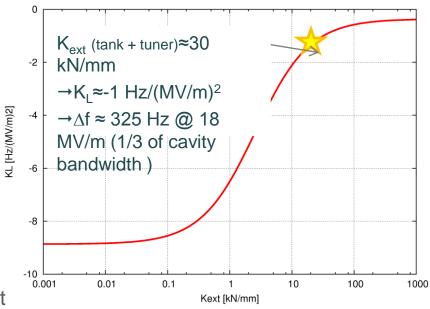
NbTi flanges

Al Mg Si Hex seals

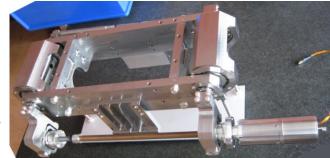
Saclay V type piezo tuner



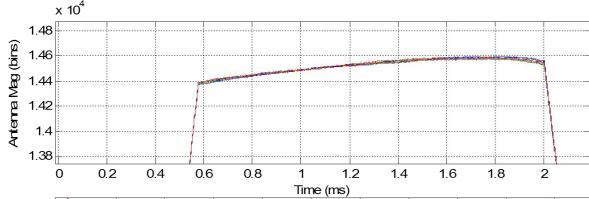

Irfu RF/mechanical design

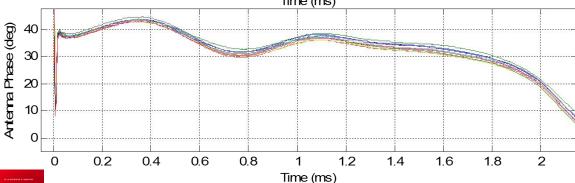


Cavity stiffness Kcav [kN/mm]	2.59
Tuning sensitivity Df/Dz [kHz/mm]	197
K_L with fixed ends [Hz/(MV/m) ²]	-0.36
K_L with free ends [Hz/(MV/m) ²]	-8.9
Pressure sensitivity K _P [Hz/mbar] (fixed ends)	4.85



Saclay-V tuner concept adapted to the ESS cavity Fast/slow tuner (with piezo)




Piezo tuner – type Saclay V

LDF compensation on the Saclay beta=0.47 704 MHz 5-cell cavity with the piezo tuner (Saclay-V)

Eacc = 13 MV/m. RF pulses 2 ms 50 Hz. Static KL=-3.8 Hz/(MV/m)²

	Piezo off	Piezo on
Phase excursion on flat top	+/- 25 deg.	+/- 8 deg.
Amplitude variation on flat top	45%	1.4%
× 10 ⁴		

Good repeatability although mechanical modes have no time to decay between successive RF pulses (10 pulses recorded with CERN LLRF crate)

Cavity tooling & operating scenario

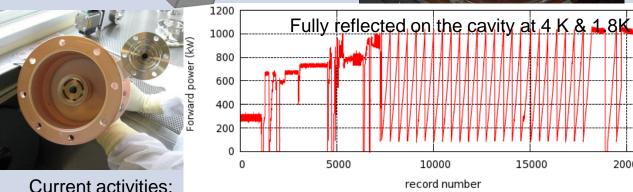
New Saclay vertical EP station: commissionned with 1.3 GHz single cell

Design of cavity handling tools

Field flatness tool under fabrication

Power coupler design

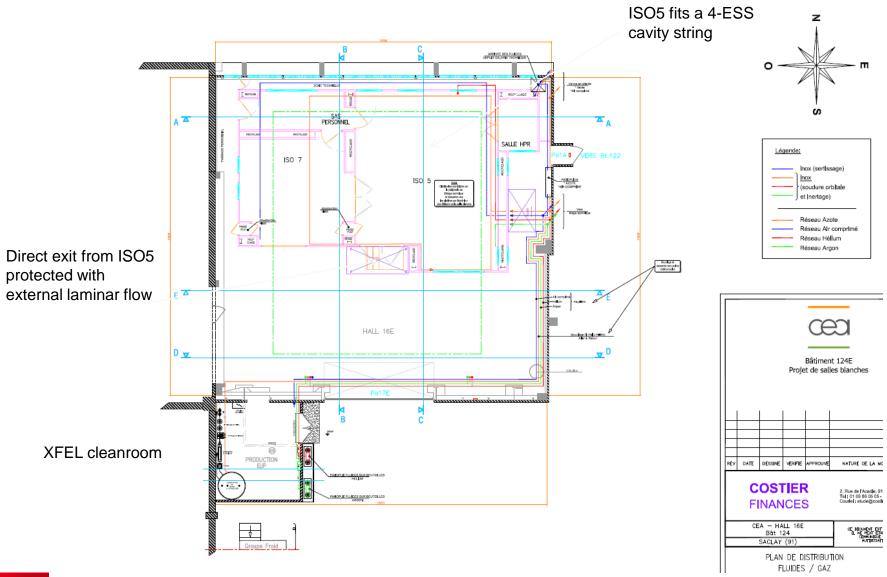
Starting from Saclay HIPPI 1MW 10%DC coupler (KEK type window)



20000

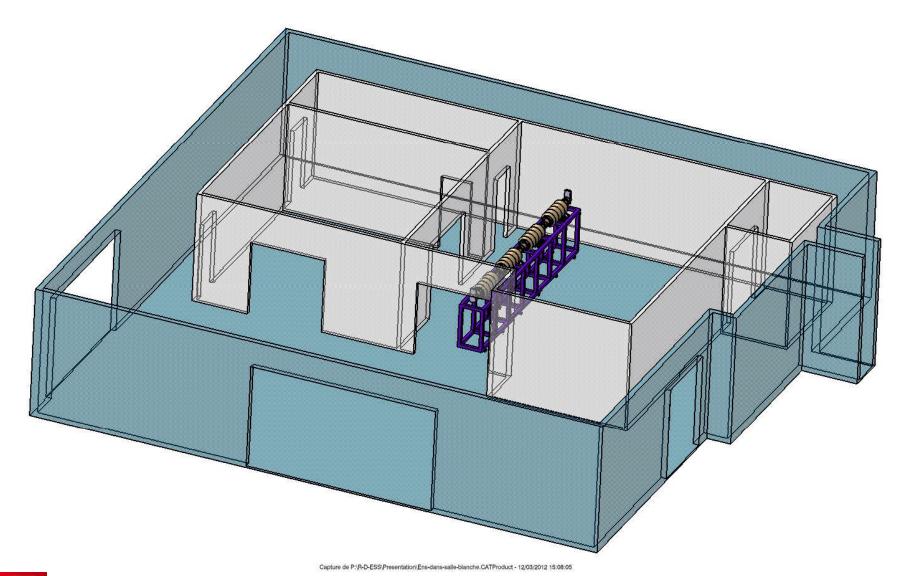
TW conditioning up to 1.2 MW 10%DC

record number



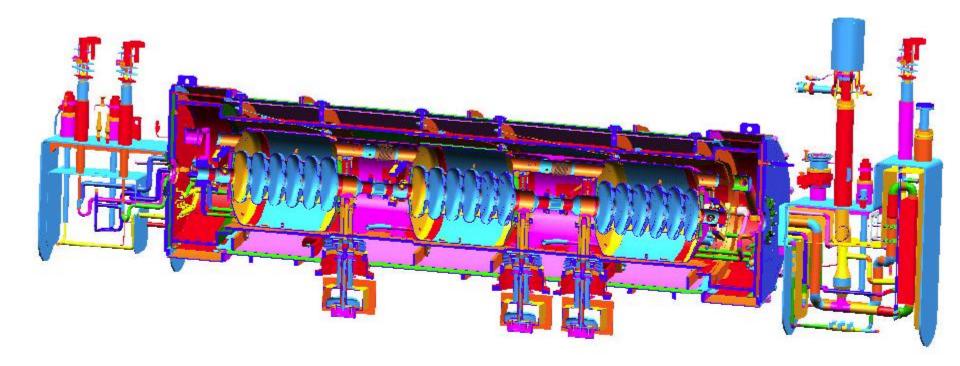
- Evaluation of maximum admissible peak power of Saclay HIPPI power coupler in SW and TW regime
- Study of antenna HV biasing started
- o Starting thermo-mechanical calculations for air cooling assessment (tested up to 25kW average full reflection in horizontal cryostat)

1400


1200

Irfu New clean room at CEA/Saclay

Irfu Artist view of the new clean room with ESS cavity string


- Full responsibility of RFQ with RF power test
- Option: functional test of ESS front end at Saclay (with partly existing infrastructures)

2. High Beta cavity cryomodules:

- Full responsibility of design, components and test of the components
- Full responsibility of integration at Saclay site
- 3. Option: contribution to Medium Beta cavity cryomodules in the frame of an international collaboration leaded by ESS
- **4. Option**: other contributions in CC, mechanical design and beam dynamics.

SNS Medium Beta Cryomodule (β=0.61)

November 6, 2001

Assembly process SNS/Cebaf

Figure 1: Typical assembly of a MB string.

SNS cavity string assembly in JLab clean room

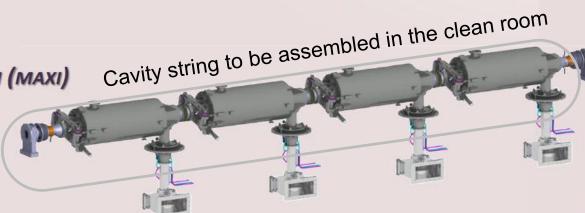
Figure 1: Typical assembly of a MB string.

ASSEMBLY LENGTH

4 CAVITIES WITH WARM VALVES

DN100 VALVE = 85MM

C/W Transition = 300mm (maxi)



BELLOWS= 150MM

CAVITY = 1317MM (MAXI)

(G. Olivier)

Fabien LESEIGNEUR

Gilles OLIVIER

April 13, 2012

ESS & CEA-Irfu Meeting @ ESS-Lund

High beta elliptical cryomodule

ESS high beta cryomodule could be based on an SNS cryomodule topology

Irfu LIST OF Proposed WORKPACKAGES for IKC 1. ESS LINAC front End:

- Full responsibility of RFQ with RF power test
- Option: functional test of ESS front end at Saclay (with partly existing infrastructures)

2. High Beta cavity cryomodules:

- Full responsibility of design, components and test of the components
- Full responsibility of integration at Saclay site
- 3. Option: contribution to Medium Beta cavity cryomodules in the frame of an international collaboration leaded by ESS
- **4. Option**: other contributions in CC, LLRF electronics, mechanical design and beam dynamics => **TO BE DISCUSSED**

- The IKC working group and steering group have been created/
- The IKC working group has a clear roadmap
- Open Issues have to be discussed: Strategy for front end test & collaboration on Medium Beta Cryomodules.
- RISK ANALYSIS has to be prepared based on XFEL example and according to ESS standards
- Next step?