

Fast Beam Interlock System

Angel Monera Martinez FPGA Engineer

www.europeanspallationsource.se 15-12-08

Acronyms

• FBI : Fast Beam Interlock

• FBI_D : FBI Driver

• FBI_DIF : FBI Device Interface

• FBI_M : FBI Master

• FBI MoM : FBI Master of Masters

IDev: Input Devices: Devices connected to the FBI as permit sources

LPS: Local Protection Systems

BI: Beam Instrumentation

PSU: Power Supply Unit

• S/N: Serial Number

Overview

- ENVIRONMENT
- FBIS MAIN REQUIREMENTS
- FBIS COPPER LINKS
 - FBIS ARQUITECTURE
 - FBIS DRIVER
 - FBIS DEVICE INTERFACE
 - FBIS MASTER AND MASTER OF MASTERS
 - FBI ACTUATOR
- IMPROVING THE COPPER SYSTEM
- FBIS OPTICAL LINKS
 - FBI ARCHITECTURE
 - FBI DIF
 - FBI M
 - FBI MoM
 - FBI ACTUATOR
- IMPROVING OPTICAL LINK
- CONCLUSIONS
- ANNEX1: INITIAL RESULTS OF THE FIRST ENGINEERING MODEL OF THE FBIS COPPER

ENVIRONMENT

- Located in the Klystron Gallery (Radiation Free)
- Klystron Gallery is organized by alternating Rack
 Enclosures and rows of klystrons amplifiers.
- Each Enclosure is composed by two 2 rows of racks
- Each row contains 18 racks

- There are 24 racks enclosures spread around the 500m long gallery.
- The rack blocks are dust proof and waterproof

ENVIRONMENT - KLYSTRON GALLERY

- Outside the racks blocks:
 - Klystron power: > 40KW
 - Illumination
 - Wireless communications
- Inside the Rack Blocks:
 - Other RF Systems
 - Pulsed power supplies with high voltage and high current
 - etc

ENVIRONMENT – KLYSTRON GALLERY

ENVIRONMENT – HOW IT WORKS

 COLLECT SYSTEM READINESS SIGNALS OR "BEAM_PERMIT" FROM DIFFERENT MACHINE PROTECTION RELEVANT DEVICES.

DECIDE DEPENDING ON THE MACHINE STATE

STOP THE PROTON BEAM IF NEEDED.

ENVIRONMENT - FBI REQUIREMENTS

- High compatibility with all input devices (PLC and FPGA systems)
- Fast reaction time (<3uS for the first 30m)
- Fast reaction time (<9us for the following 570m)
- Flexible
- Safe (1.5E-7/h dangerous failure rate per hour)
 - Equivalent to PIL3
- Highly available
- Ready for installation end of 2017

FBI COPPER SYSTEM

- Based on CERN Beam Interlock for LHC and Linac4
 - Definition of one common Interface to standardize the connection with the BIS.
 - Use multiple masters (Concentrate and decide)
 - Actuator interface to adapt the signal from the Interlock to the desired actuator.
 - BEAM PERMIT is a DC Signal (Linac4)

Optimized for ESS Needs

- Tree / Star architecture to fit klystron gallery.
- Smaller Footprint, thinner cables smaller connectors (MicroD).
- Different standard (uTCA or Pizza Box)
- Updated Bill Of Materials
- Faster response time.
- Replaced BEAM PRESENCE signal by PERMIT TEST

FBI COPPER SYSTEM ARCHITECTURE

FBI DRIVER

- Made to drive the FBI_DIF
- Implemented within the fast electronics or
 - Developed like a module that can be plug in to the "of the shelf" boards
- Small footprint
- High Sensibility: 1.7V Min to give permit for modern FPGA

FBI DRIVER

FBI DIF

- Translate Beam Permit to a RS485 to have higher immunity and reach.
- Input compatible with PCL and FPGAs
 - Wide Input Voltage range (From 1.8V to 36V)
 - Low current (< 15mA)</p>
- RS485 at the output
- Electrically Isolated from the IDev
- Permit only passes through logic
- Modern components
- Higher Integration
- Self Testing onboard.

FBI_DIF

FBI Master and Mastor of Master

- Based on uTCA or Pizza box
- Permit pass through an FPGA
- Operative system within each box
- Fail safe
- Fast response
- Programmable digital filter @ inputs

FBI_MASTER in uTCA

FBI MASTER Pizza box

FBI_ACTUATOR

- Tailor made for Each Actuator
- Ensures redundant control even if there is one input
- Allows many devices to control the actuator
- Failsafe
- No blind failures
- Permit only passes through logic
- CPLD monitors the permit and Inform the master
- Redundant Power Supply.
- 19 inch pizza box format

FBI ACTUATOR

FBIs COPPER REVIEW

THE GOOD

- Small footprint
- Simple electronics
- Cheap circuits
- Very reliable connectors

THE UGLY

Connectors are hard to install "on the field"

• THE BAD

- Expensive connectors
- Found weak points in the connection between the IDev and FBI_DIF

IMPROVING THE COPPER SYSTEM

- Redundancy maybe added in case of needed additional level or protection to reach the desired protection level.
- Self testing sequence built into and outside the FBIs to remove the Blind failures and increase the protection level of the system.
 - FAST TEST
 - REALIZED BETWEEN PULSES
 - SLOW TEST
 - REALIZED AFTER TECHNICAL STOPS
 - ACTUATOR TEST
 - REALIZED AFTER SLOW TEST

FAST TEST

- Realized between pulses
- Check the integrity of the connections from IDev to MoM
- Generated by the FBI_MoM
- Requires ~20us to execute
- Propagated through FBI_M to FBI_DIF
 - Answered by FBI_DIF if SLOW connected at the input
 - Propagated to the Input Device if FPGA
- While Permit_Test is on, Input device should remove the Beam_Permit signal

FAST TEST

SLOW TEST

- Executed after Technical stop
- Check the integrity of the whole system, not only the links and the FBIs but also the Protection functions described by Machine Protection
- Realized with no beam
- Generated by Timing System
- ALL input devices should simulate a trigger in their protection functions and remove the beam_permit

ACTUATOR TEST

- Generated by the Machine Operators
- Two stage test:
 - WITH LONG BEAM AND LEBT FC IN
 - TO TEST THE SOURCE AND LEBET CHOPPER
 - WITH SHORT AND SAFE BEAM AND LEBT FC OUT
 - TO TEST THE MEBT CHOPPER AND ANY OTHER BEAM ACTUATOR
- Beam will be generated and the FBI_MoM will trigger one by one the different beam actuator at half of the pulse time to ensure correct behavior.

FBIs OPTICAL

- EVOLUTION of the FBI Copper version
- Links between ID and FBI_DIF still been copper for compatibility
- Copper links replaced by Gbit OPTICAL LINK:
 - FBI_DIF to FBI_M
 - FBI_M to FBI_MoM
 - FBI_MoM to FBI_A
- Uses FPGA with Internal serializers for all communications

FBI OPTICAL ARCHITECTURE

- Follows same distribution as copper
- FBI_DIF will concentrate signals instead of just adapting levels
- Copper links uses DC signals as before
- Optical links uses Gbit connection with BEAM_PERMIT packed into DATA
- BEAM_PERMIT path becomes dynamic, no blind failures if bit is stock

FBI OPTICAL ARCHITECTURE

FBI DIF Optical

FBI MASTER OPTICAL

FBI MASTER of MASTER OPTICAL

FBI ACTUATOR OPTICAL

FBI OPTICAL CONCLUSIONS

THE GOOD

- Increased Speed compared to Copper System
- Dynamic path for BEAM PERMIT
- Increased noise immunity

THE UGLY

- Optical transceiver are as expensive as MICRO D connectors
- Test still need to be performed between the Input device and FBI_DIF
- BEAM PERMIT depends of programmable devices (complex analysis)

THE BAD

Fiber optics have shorter lifespan than copper

IMPROVING OPTICAL (ideas)

- Separate Slow and Fast beam Interlock
 - Remove FBI_DIF and use Optical from IDev till FBI_Master.
- Fast TEST to warranty full FBIS functionality all time
- Dancing Permit (Next Slide)
- Slow and Actuator TEST will still need to be executed after every technical stop

IMPROVING OPTICAL - DANCING PERMIT

- Based on the detection of a phase change of a signal generated by the FBI_DIF
 - No free oscillation
 - Delay can be set automatically
 - Test signal can by any one (even random)

- (BAD)
 - Its more intrusive in the Device Electronics Firmware
 - Requires extra settings for the FBI_DIF

CONCLUSIONS

- NO CONCLUSIONS 😊
 - WE STILL TRYING TO CHOOSE WHAT IS BEST

CHARACTERISTIC	COPPER	FIBER
PRICE		X
SPEED	X	X
NOISE IMMUNITY		X
FAST DESIGN	X	
KNOWLEDGE	X	
MAINTENANCE	X	

 WE NEED AN ENGINEERING MODEL OF THE FBIS OPTICAL TO COMPARE

THE END

THANKS

ENGINEERING MODEL of

FBIs COPPER

FBI DRIVER (on pluggable module)

FBI DEVICE INTERFACE

FBI MASTER

FBI ACTUATOR

FBIs SYSTEM

RESPONSE TIME

