

TUESDAY, JANUARY 17, 2017

FAT CRYSTALLITE THICKNESS DISTRIBUTIONS

JOHN VAN DUYNHOVEN, RUUD DEN ADEL, KEES VAN MALSSEN, MICHIEL MEEUSE, [®]OLEKSANDR MYKJAYLYK, ADRIAN VODA

UNILEVER IS A GLOBAL COMPANY

EUROPE

- **€13.6** BILLION TURNOVER
- 2.6% UNDERLYING VOLUME GROWTH
- 27% OF GROUP TURNOVER

ASIA, AFRICA, CENTRAL & EASTERN EUROPE

€22.4 BILLION TURNOVER
3.0% UNDERLYING VOLUME GROWTH
41% OF GROUP TURNOVER

THE AMERICAS

- **€17.3** BILLION TURNOVER
- **0.4%** UNDERLYING VOLUME GROWTH
- **32%** OF GROUP TURNOVER

2015 TURNOVER = €53.3 BN

R&D FACTS & FIGURES

- **€1 billion** annual investment
- >6,000 R&D professionals
- 6 key R&D sites; 92 locations around the globe
- Portfolio of >20,000 patents and patent applications
 >300 new patent applications filed each year; Most active patent applicant in UK in 2013
- **64** research publications in 2015

WORKING WITH OTHERS

- 14 Top Universities
- 18 Global Partners

OUTLINE

FOOD INNOVATION: AN OLD TRADE

OUR MOTIVATION

QUITE SOME DEMANDS

FOOD LIPID STRUCTURES

2

MULTISCALE FOOD LIPID STRUCTURES

NMR VS X-RAY CRYSTALLOGRAP HY

FAT CRYSTAL POLYMORPHISM

LIPID POLYMORPHISM: THE X-RAY VIEW

d-values in Ångström

LIPID POLYMORPHISM: THE NMR VIEW

Hexagonal

0)

 $(\mathbf{0})$

Triclinic

β'

Orthorhombic

X-RAY VS NMR

X-ray Periodicity needed

NMR Local order & dynamics No long-range order needed

AVERAGE CRYSTALLITE THICKENESS

2

THE X-RAY VIEW: DIFFRACTION PEAK WIDTH

THE (simple) X-RAY VIEW 1. The Scherrer equation

- Peak broadening due to
 - crystallite size
 - instrument
 - microstrains

Scherrer equation for average crystallite thickness (ACT)

$$\Delta(2\theta) = \frac{K\lambda}{ACT\cos\theta}$$

K depends on

- how the peak width is defined
- the shape of the crystal/crystallite
- the size distribution

THE NMR VIEW: LOCAL DIFFERENCES IN MOBILITY

¹H spectrum of a fat blend.

THE NMR VIEW: LOCAL DIFFERENCES IN MOBILITY

Blend A

Blend B

NMR SELECTION OF RIGID DOMAINS

1H spectrum of a fat blend

DQ edited spectrum, rigid phase selected.

THE NMR VIEW ON THICKNESS: SPIN-DIFFUSION

Multi-scale structures

THE NMR VIEW ON THICKNESS: SPIN-DIFFUSION

THE NMR VIEW ON THICKNESS: SPIN-DIFFUSION

AVERAGE CRYSTALLITE THICKNESS by NMR and SAXS

- Operational range: <100 nm
- Assumption: unimodal distribution
- NMR biased to smaller thicknesses: heterogeneity?

CRYSTALLITE THICKNESS DISTRIBUTIONS

FROM AVERAGE TO THICKNESS DISTRIBUTION

•The diffraction function can be expressed as a Fourier series dependent on all thicknesses (Bertaut-Warren-Averbach method, BWA).

•.Implemented in MUDMASTER programme

Bertaut-Warren-Averbach (BWA)

14 020 18

22

Thickness distribution M: $H(n) = \frac{1}{M}\sum(M-n)f(M)$

14 °20 18

22

THE MUDMASTER COOKBOOK FOR RETRIEVING CTD

- Read the XRD peak $I(\theta)$
- (Correct for Lp G²)
- Remove background
- Correct for instrumental broadening
- Decompose ϕ into Fourier series H
- Determine thickness distribution M

VALIDATION

CSD calculations of tripalmitate

(multiples of repeating bilayer)

IMPACT OF PROCESSING

2

SPREADS MANUFACTURING

Conventional Formulation

oil/fat blend Water

Conventional Process

Melt/cool: fat crystallization X Mix: emulsification

CONVENTIONAL PROCESSING Impact of formulation

SPREADS MANUFACTURING

Conventional Formulation

oil/fat blend Water

Conventional Process

Melt/cool: fat crystallization X Mix: emulsification

Novel formulation

oil solid fat powder water

Novel process

Mix: emulsification

NOVEL PROCESSING Impact of processing

CONCLUSIONS

NMR and SAXS quantitatively assess average crystallite thickness WBA method accurately determines thickness distribution Processing conditions leave a fingerprint in crystallite thickness distributions

Methodology for benchmarking food formulation &processing Definition and protection of IP on novel processing routes

MULTISCALE FOOD LIPID STRUCTURES

PERSPECTIVES: SESANS

SESANS of 14% triglyceride dispersion diluted with 25% deuterated decane

PERSPECTIVES: SAXS UNDER SHEAR

ACKNOWLEDGEMENTS

Ruud den Adel Kees van Malssen Michiel Meeuse Adrian Voda

Oleksandr Mykjaylyk

Tatiana Nikolaeva Henk Van As

Wim Bouwman Evgenii Velichko

DUBBLE

onnecting innovators

Physical meaning of the interference function

- The interference function represents effects of the phase differences that appear during wave scattering by all the *n*th nearest layer pairs that exist in the stacks.
- *m*, *m* ' are 2 layers separated by *n* = *m* '-*m* interlayer spacings *d*(001).
 Distance between *m* and *m* ' is *Z_n* = *nd*(001).
- The contribution to diffraction due to the phase differences between the 2 waves is expressed by the term
 - $\cos(2\pi Z_n Z^*)$

Figure 1. A schematic illustrating the difference in paths traveled by diffracted waves scattered by m' and m layers separated by n interlayer spacings (n = m' - m), so that the distance between the layers $Z_n = m'd(001) - md(001) = nd(001)$.

$$Z^* = 2 \sin \theta / \lambda$$

Physical meaning of the interference function

- The summation of these cos(...) products for all n = m' m normalized for the unit cell (divided by total number of layers, M), gives the interference function, φ(Z*).
- φ(Z*) describes the total effect of the phase difference on the intensity distribution along the Z* axis:

$$\phi(Z^*) = \sum_{n=-M}^{M} \frac{(M - |n|)}{M} \cos 2\pi Z_n Z^*$$

• It is physically unrealistic to assume that samples consist of stacks having the same number of layers.

M-n is the number of layer pairs separated by n interlayer spacings d(001).

Figure 2. Relation between total number of layers in a crystal (M) and amount of pairs of layers (M - n) separated by n spacings of d(001). An increase in n from 1 to 5 decreases the number of nth neighbors from 5 to 1.

Physical meaning of the interference function

• Realistic situation: the sample consists of a stack with a distribution of layer thickness *f*(*M*)

$$\sum_{M_1}^{M_2} f(M) = 1 \quad \text{and} \quad \sum_{M_1}^{M_2} Mf(M) = \overline{M}$$

- M_1 and M_2 correspond to stacks having the smallest and the largest number of layers respectively.
- \overline{M} is the mean number of layers per stack.
- The interference function for a sample having of a CTD:

$$\phi(Z^*) = \sum_{n=-M_2}^{M_2} \frac{N(n)}{\overline{M}} \cos 2\pi Z_n Z^* = \sum_{n=-M_2}^{M_2} H(n) \cos 2\pi Z_n Z^*$$
$$H(n) = \frac{1}{\overline{M}} \sum_{M_1}^{M_2} (M-n) f(M)$$

The interference function as a Fourier series

• After some math cosmetics on the equation of $\phi(Z^*)$...

$$\phi(Z^*) = \phi(s^*) = \sum_{n=-M_2}^{M_2} H(n) \cos 2\pi n s^*$$

• Because *n* is integer $\phi(s^*)$ represents a Fourier series.

• The Fourier coefficients
$$H(n) = \frac{1}{\overline{M}} \sum_{M_1}^{M_2} (M - n) f(M)$$

Determination of f(M) and \overline{M}

• *H*(*n*) is a function dependent on the mean thickness and on the thickness distribution.

. .

$$H(n) = \frac{1}{\overline{M}} \sum_{M_1}^{M_2} (M - n) f(M)$$
$$\frac{\partial H(n)}{\partial n} \bigg|_{n \to 0} = \frac{1}{\overline{M}}, \text{ and } \frac{\partial^2 H(n)}{\partial n^2} \bigg|_{n \to 0} = \frac{f(M)}{\overline{M}}$$

Stack thickness (crystallite): $T = M \cdot d(001)$

MODELLING SPIN DIFFUSION

NMR spin-diffusion from fat crystallite to disordered phase via proton dipolar couplings.

NMR model

One approach solution:

 $D \cong \frac{4}{\sqrt{\pi}} \frac{\rho_M \sqrt{D_R D_M}}{\rho_R \sqrt{D_R} + \rho_M \sqrt{D_M}} \sqrt{t_0}$

Fluctuations in the layer position/thickness

- This is about statistical variations of $d(001) \pm \varepsilon$.
- Implication to $\phi(Z^*)$ is that the cos() terms need averaging.

USING SEGMENTS

Click to

Edit Text

ROW GROUPING

Use these shapes with text for optional placement in your layout. You can scale them, crop them off a page, and change their colour (within the chosen teal palette). You can use the segment shapes on their own, or in the groupings as shown.

Refer to the <u>Visual Identity Standards Guide</u> on the Brand Centre for more details on proper use.

Click to

Edit Text

More insight needed by means of imaging methods to validate the aggregates morphology.

USING THE R&D COLOUR PALETTE

The chosen palette for R&D is the selected teal coloured segment below. Please click here to download the colour wheel.

PHIS 2582

#AD4FC4

C48 M80 Y3 K5 R172 979 B198

PHIS 2627 CBS M100 Y6 K38

PM5 241

C33 H100 Y2 K2 R175 022 B133

USING ICONS

Use these icons for optional placement in your layout. You can scale them, crop them off a page, and change their colour. Please be sure to use the icons when they're relevant to a specific message.

Refer to the *Visual Identity Standards Guide* on the Brand Centre for more details on proper use.

USING ILLUSTRATIVE TYPE

To bring in more personality, use this optional lettering to highlight small amounts of text. Arrange each letter individuality to form words and phrases; scale them and change their colour. To help align text, turn on the grid lines in the menu bar under View.

Refer to the *Visual Identity Standards Guide* on the Brand Centre for more details on proper use.

ABCDEFGHIJKLMN **OPQRSTUVWXYZ.** 1234567890 =+%-*&(]?!