

Msc Mikkel Schou Nielsen Danish Fundamental Metrology A/S, Lyngby, Denmark

The structure of food emulsions

Food emulsion

The structure of food emulsions

Food emulsion

Picture: Bearas - Wikimedea Commons

Liquid

Picture: Merete Bøgelund Munk

Effect of addition of emulsifier

Effect of addition of emulsifier

Product composition

- ~25 w% lipid phase:
 - 25 w% Palm kernel oil
- \sim 75 w% water phase:
 - 10 w% sugar (sucrose)
 - 62 w% water
 - 0.6 w% sodium caseinates
 - 0.6 w% stabilizers
 - 1 w% emulsifier

Effect of addition of emulsifier

Confocal laser scanning microscopy

Scalebar: 10 microns

X-ray ptychography

X-ray ptychography

Far field

Ptychographic scan

From recorded patterns to an image

Experimental setup

Setup at cSAXS beamline

Ptychographic X-ray computed tomography

Tomographic reconstruction

Combining projections from rotation of sample

Slide 11

Tomographic reconstruction

Combining projections from rotation of sample

Denosing

Removing noise without blurring features

Slide 13

Denosing

Removing noise without blurring features

Segmentation

Segmentation of water and lipid phases

Slide 15

Segmentation

Segmentation of water and lipid phases

3d visualization of the emulsion

шш

3d visualization of the emulsion

Micro-cellulose stabilizers

3d visualization of the emulsion

Encapsulated water in the lipid phase

Partial coalescence of globules?

Slide 21

Partial coalescence of globules?

Partial coalescence of globules?

ALL STOLLER

10 12 14 16

[µm]

4 6 8

Slide 23

Lipid domain size distributions

100

Lipid network

Lipid domain size distributions

Fig. 2. The effect of monoglycerides on droplet size distribution in emulsions, – (solid black) control(solid black), LACTEM (long dash), — The line style of "LACTEM + GMS" should be grey LACTEM + GMS (solid grey), – LACTEM + DATEM (short dash), LACTEM + GMU (dot).

Measure- ment	DLS control	Sam1	Sam2	Sam3	Sam4
Mean diameter	0.98	1.15	1.41	1.40	1.25

Network analysis

Fractal dimensions – a way forward?

Measurement	Pty-1	Pty-2	Pty-3	Pty-4
Fractal dimension	2.67	2.42	2.44	2.48

Network analysis

Fractal dimensions – a way forward?

Measurement	Pty-1	Pty-2	Pty-3	Pty-4
Fractal dimension	2.67	2.42	2.44	2.48

Table 2

Fractal dimension calculated via image analysis compared to fractal dimension calculated via rheology using the weak theory. Errors in D are standard errors of three replicates

vsis rheology (weak-link regime) deviati
2.37±4.0% 2.5
$2.01 \pm 15.7\%$ 1.5
$2.82 \pm 0.6\%$ 0.0
$2.88 \pm 0.5\%$ 1.0
$2.41 \pm 6.4\%$ 0.4

Discussion and conclusion

Slide 28

Discussion - radiation damage

High intensity of initial beam causes bubble formation

Discussion – sample container

Small container effects the sample?

Conclusion and outlook

The 3D nanostructure of a dairy-like emulsion

Conclusion

- The nanostructure of the food emulsion was imaged using ptychographic X-ray CT.
- Lipid-phase forms 3D network
- Consistent with (extreme) partial coalescence.

Outlook

- From tomographic scans to viscoelastic properties *Finite element modelling?*
- Increased avalability of method MAX IV

Acknowledgements

University of Copenhagen Merete B. Munk Jens Risbo Kell Mortensen Stefan Bruns Robert Feidenhans'l Kristian Rix

Technical University of Denmark Emil B.L. Pedersen Jens W. Andreasen

Paul Scherrer Institute, Switzerland Ana Diaz Mirko Holler Funding agencies Danish council for strategic funding The danish national advanced technology foundation

Thank you for your attention!

m mm