

EUROPEAN SPALLATION SOURCE

WP 5 Fluid Systems – Water Cooling and Target Station HVAC TIK 5.1-5.3

Håkan Carlsson WP Manager – ESS Lund

www.europeanspallationsource.se

December 17, 2015

Outline

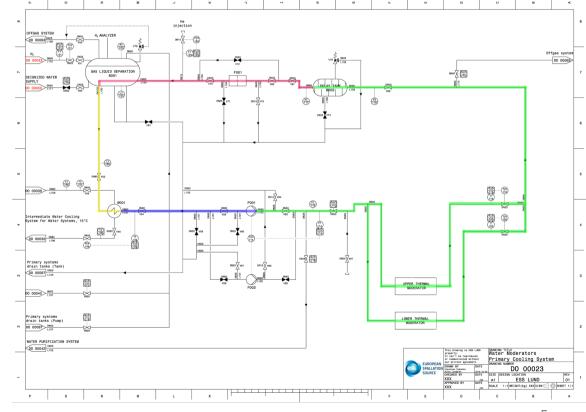
- Highlights
- Schedule performance
- Near-term plans
- Risks and issues
- Concluding remarks

Highlights Water Cooling Systems TIK 5.1-5.2

- HAZOP performed according to IEC 61882:2001
 - Thermal Moderator Cooling System
 - Water Purification System
 - P&ID:s updated
- Model Coordination Started with Conventional Facility (CF) and Target Station Model responsible designers
- Component Specifications preliminary valves, HX, pumps
- 3D-modelling electrical cable trays in Utility Block
- Electrical loads delivered to CF
- Design of embedded plates for extra pillars in Utility Block
- Preliminary Design of Water Purification (Not TIK)
 - Updated PDR Water Purification

EUROPEAN SPALLATION

Highlights Target Station HVAC TIK 5.3



- Quality Classification of Ventilation System in review
- Accident analysis Stopped ventilation in Active Cell (HVAC) in Review
- Penetrations HVAC ducts level 90 delivered to CF
- Preliminary design of water system for fan-coils
- Preliminary design of ducts for connection cell
- Re-arranged ventilation equipment in Technical rooms

HAZOP – Scope (Water Cooling Systems)

- Identify hazard and operability problems, their possible causes and consequences that potentially can cause physical injury or damage to the health of people or damage to property or the environment.
- Flow, Pressure, Temp
- Level, Time

Valve Specification – example (Water Cooling Systems)

VALVE SPECIFICATION

02 Plant D02/TARGET	03 Location, Room No D02.103.4003	04 System No 1050	^{05 Component No} V-001		
06 Quantity 1	07 Location, Refering to Co Outside Inside		08 Valve Code NA		
09 Date 2015-12-07	10 Revised; Date, Item				

OPERATING CONDITIONS

11 Medium AIR		12 Oper	ating Pressure	0,	6 MPa	13 Op	erating Te	mperature	20 °	С
14 Flow		15 Norr Open	nal position Clo	sed [16 Op Max:	ening / Clo /	sing time S Min:	1	s
17 Flow tending to Open Cl	ose 🗆	18 Oper	ating Freqency 2	YEA	R	19 Tri	ansients			
20 Ambient Conditions Normal	Pressure 0,1	MPa	Temperature 20	°C	Humid 8	ity O	RH%	Radiation >1	mSi	/h
21 Ambient Conditions Abnormal	Pressure	MPa	Temperature 5-30	°C	Humid 60-		RH%	Radiation	mS	i/h

VALVE POSITIONS

22 Bore		Stem			
22 Bore Vertical	Horizontal	Vertical	Horizontal	Upside-down	

DESIGN DATA

23 Valve Type CHECK	24 Design Press 1,0 MPa	25 Design Temp 85 °C	26 Max Head loss coeff. Z=
27 Connection Size DN025	28 Connection type Weld I Flange Thread	29 Bonnet Relief Yes No	30 Nozzle for Leakage Body drain test
31 Max differential pr MPa at max pres	essure when opening the valve MPa below disc	above disc	32 Hard facing Seat Disc
33 Max differential pr	essure when closing the valve		
MPa at max pres	: MPa below disc	above disc]
34 Valve is end point YES NO	of pressure boundary III If yes, no seat leakage shall occu	ar att hydraulic test	above disc
35 Stem Sealing Arran Single Packing		nediate drain 🔲 Be	llows with single packing
36 Pivot Pin Sealing /	Arrangement (check valve) TB	D	
37 Body Bonnet Seali Single gasket		provision for seal wel	d alt. Pressure Seal
38 Electrical Position I Open and Close		39 Mechanical Positi Yes	on Indication
40 Hydraulic removal Yes	of stem packing 41 Back seat No Yes		42 Inservice Inspection Yes No
43 Connecting Pipe D DN025	Dimension / Material / Inlet 1.4404		Dimension / Material / Outlet 1.4404
45 Valve Length TBD		mm TBD	mm
47 Force on Disc / St	em		
Max	Mpa above disc	tending to open	tending to close
Max	Mpa below disc, valve	tending to open	N

EUROPEAN SPALLATION SOURCE

6

MATERIAL

48 Body Bonnet A351 CF8M	49 Stem NA	
50 Disc AISI 316	51 Seat	
52 Gasket, Body Bonnet	53 Stern Packing	

N/A

QUALITY

55 Quality Class PED 97/23/EG			58 Documentation acc, to EN 10204 3.1
59 Tightness Class	60 Serialized Yes No	61	

ACTUATOR

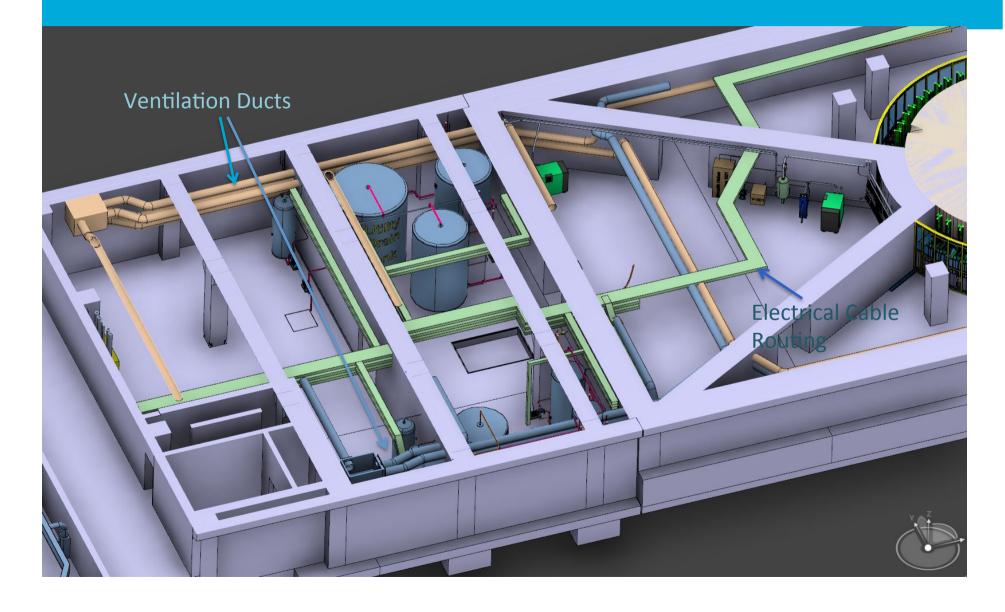
62	Pneumatic	Motor	Handwheel

DESIGN DATA ACTUATOR

63 Design Pressure MPa	64 Design Temperature °C	65 Actuating	Medium	66 Actuating Max	Pressure Min	MPa
67 Spring to Open Close	68 Spring Force on Stern Valve Open:	N	Vah	ve Closed	:	N
69 Total gas force on stem at min	n actuating pressure (see item	66)				
70 Туре		71 Manufac	tor			

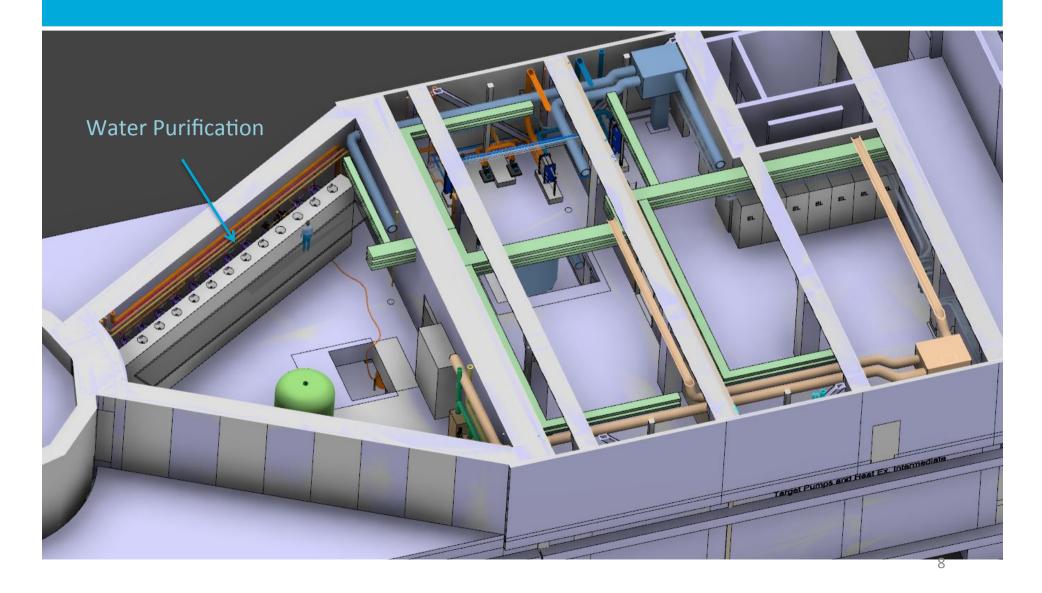
MOTOR

72 Specified Operating Time			73 Voltage	•		
Min s Max:	s Normal:	S		v		
74 Position Indication						
No 🔲 Limit Switch] Cont	t. Indicatio	on 🗖	Spec	:	
75 Req. Torque opening / closing						
Start: / During O	peration	1 1	Im Back	seating	1	Nm
76 Max permitted Torque for the valve						
Into open pos: Into	close pos:	Nr	n Duri	ng operation	:	Nm
77 Valve Stem turns per full Stroke	78 Length of Str	roke		79 Valve Ster	n Diameter	
						mm
80 Type		81 Mar	ufacturer			

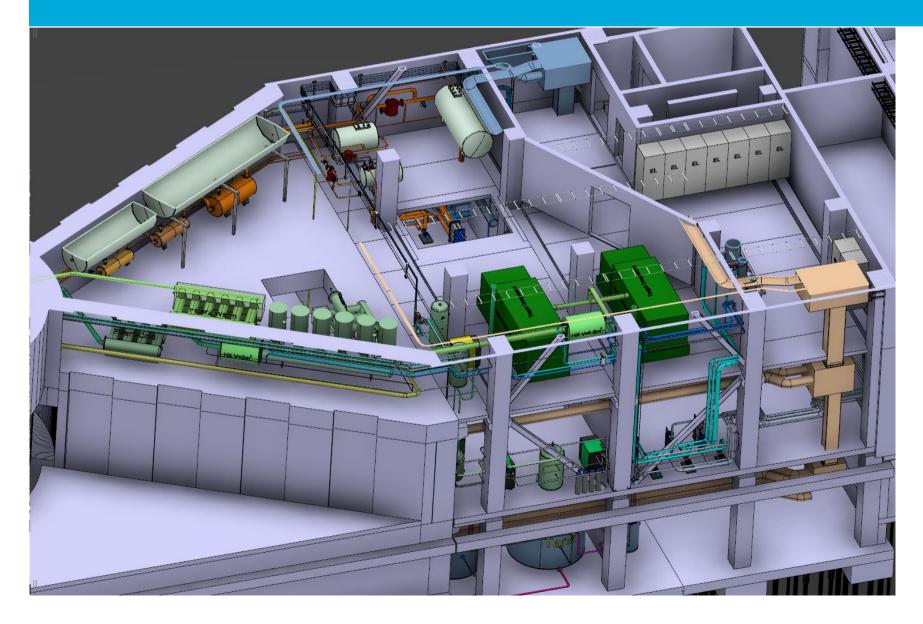

REMARK

82 Manufacturer to fill in item 47, 68, 75, 76, 77, 78 and 79:

Utility Block – Lay-Out – Level 90

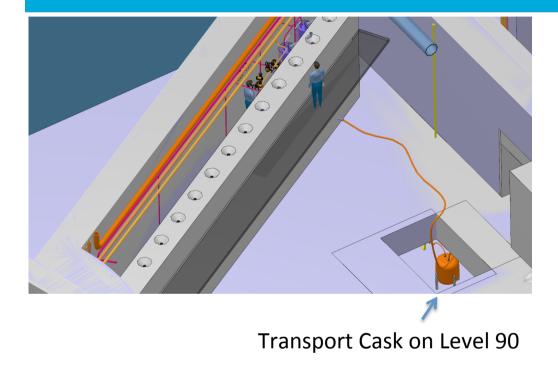

EUROPEAN SPALLATION SOURCE

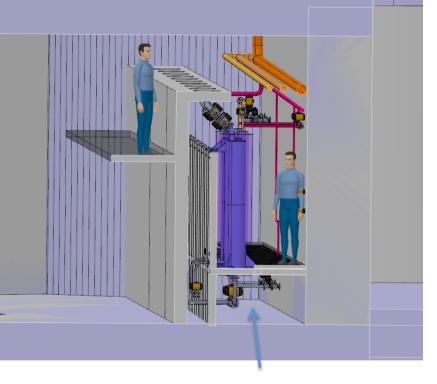
Utility Block – Lay-Out – L100


EUROPEAN SPALLATION SOURCE

Utility Block – Lay-Out – L110

EUROPEAN SPALLATION SOURCE



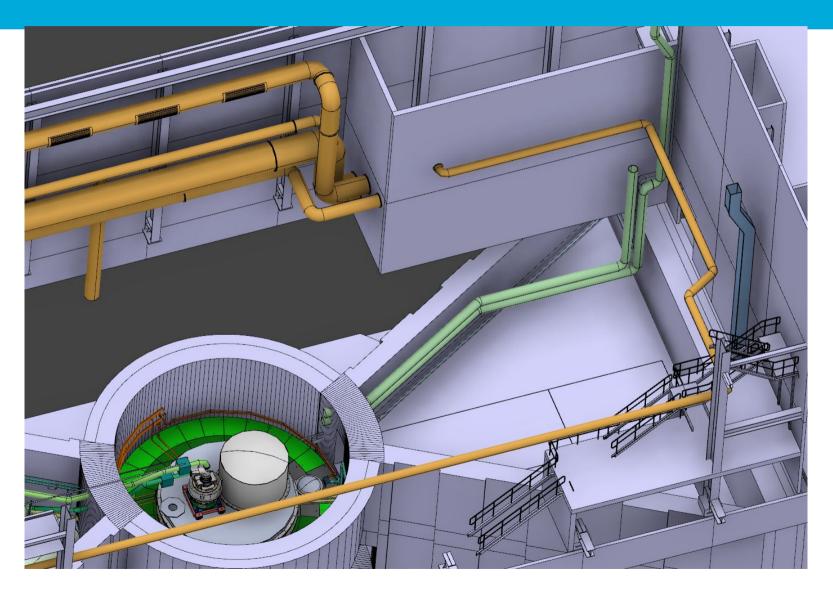

9

Water Purification System

SOURCE

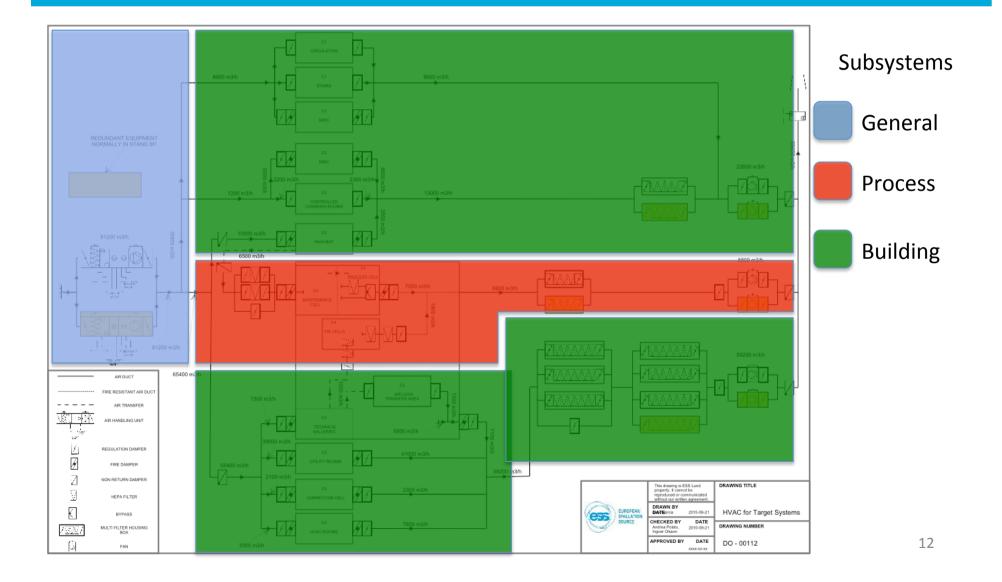
IX-columns on Level 100

Empty the IX columns with water or air

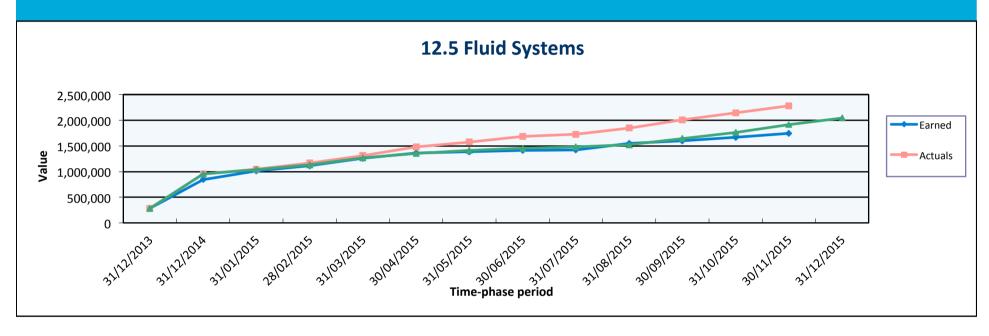

Shielded wall added to protect workers during filling and emptying

Total 12 columns of identical design

Ventilation Ducts – Connection Cell



EUROPEAN SPALLATION SOURCE


Target Station HVAC – Subsystem

Schedule Performance (1 of 2)

EUROPEAN SPALLATION SOURCE

Variance Analysis:

- Cumulative SV of -0.17 M€ (SPI = 0.91) is primarily due to:
 - Delays in starting up Final Design activities In-Kind start-up is late
 - Lack of system/tool/process support due to "green-field"-site

Schedule Performance (2 of 2)

IDs	Name	ТІК	Current Forecast or Actual
A73700	CDR All Intermediate Water Cooling Systems	5.2	2016-12-22
A73680	CDR All Primary Water Cooling Systems	5.1	2016-11-15
A38190	Award contract for Primary Water Cooling Systems	5.1	2017-05-29
A39790	Deliver Primary Water Cooling Systems to ESS site	5.1	2017-11-15
A38210	Complete Installation Primary Water Cooling Systems	5.1	2018-09-06
A38220	Complete System Test Primary Water Cooling Systems	5.1	2019-02-07
A38840	CDR Target Station HVAC	5.3	2016-10-20
A38870	Award Contract for Target Station HVAC	5.3	2017-05-02
A38880	Deliver Target Station HVAC	5.3	2017-11-03
A38900	Complete Installation Target Station HVAC	5.3	2018-09-24
A38910	Complete System Test Target Station HVAC	5.3	2019-03-25

Near Term Plans Water Cooling Systems TIK 5.1-5.2 (next 3 months)

- Piping System Structural Analysis
 - Method to be used
 - Structure of reports
- Finalize Component Specifications
- Start Instrument specification
- Define interface towards ICS interface, signals and controls
- Finalize preliminary design of de-gassing system for Primary Water Cooling
- Perform HAZOP for remaining P&ID:s
 - Shielding & Plugs, Reflector (almost identical to Moderator)
 - Intermediate Water Cooling Loops
 - Update P&ID:s
- Evaluation of piping tool for ESS
- Accident Analysis of Primary Water Cooling Systems
- Kick-off meeting with IK-Partner
- Proton Beam Window Cooling PDR 5th of April

EUROPEAN SPALLATION

Near Term Plans Target Station HVAC TIK 5.3 (next 3 months)

- Update of 3D model ventilation ducts and technical rooms
- P&ID:s for subsystems of TS HVAC
- Finalize Interface Description Documents and update the room book
- Kick-off meeting with IK-Partner

Risks and Issues

- Lack of system/tool/process support due to "green-field"-site
- Coordination of interfaces WP:s, IK-partners, CF, ICS.....

Concluding Remarks

EUROPEAN SPALLATION SOURCE

• In-Kind Partner from Czech Republic

