

EUROPEAN SPALLATION SOURCE

WP7 Target Controls

Linda R. Coney Group Leader – Target Safety & Controls (ESS)

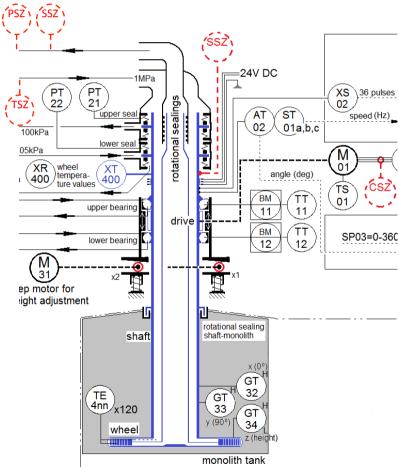
www.europeanspallationsource.se

December 17, 2015

Outline

- Highlights
- Schedule performance
- Near-term plans
- Risks and issues
- Concluding remarks

Highlights – Controls

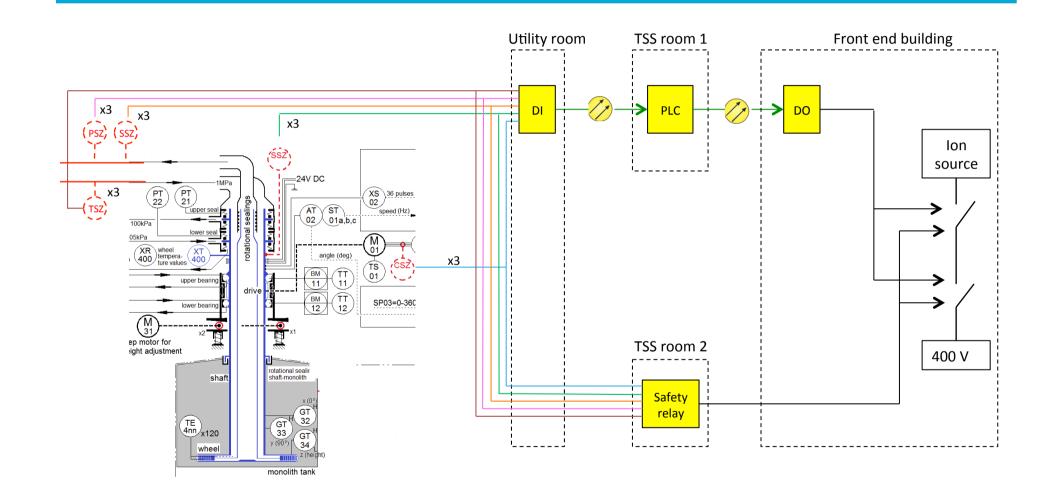

EUROPEAN SPALLATION SOURCE

- TSS (Target Safety System)
 - Concept Specification on TSS document under review for PDR
 - In accordance with IEC 61511 lifecycle
 - Chose standard for TSS design (IEC 61511) 'TSS safety standard selection' document under review for PDR
 - Described Pilot-TSS interfaces all ICD-R documents under review for PDR
 - Target: Target wheel, target helium cooling system
 - Accelerator: ion source and bending magnets
 - Site Infrastructure, ICS: Control Room & EPICS, Machine Protection
 - Completed Pilot-TSS reliability analysis
 - Started FMECA for Pilot TSS
 - **Determined Pilot-TSS trip values** for loss of cooling scenarios
 - Helium temperature (T_{in}), He pressure (P_{out}), He flow velocity (V_{out})
- Target Controls
 - Process control schedule under development by ICS (Benedetto Gallese)
 - Analysis begun for determination of Target PSS requirements (Stuart Birch)

Pilot TSS Inputs

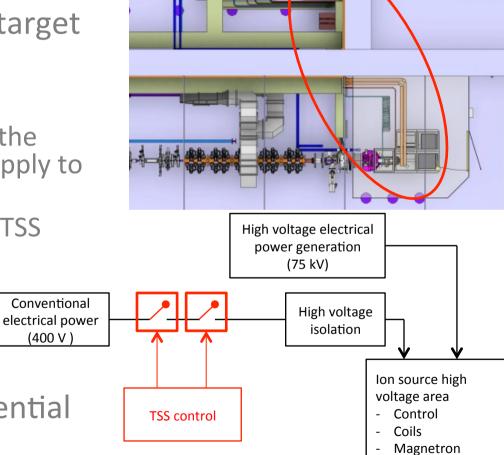
Process variable Event	Outlet velocity	Outlet pressure	Inlet temperature	Target shaft rotational speed
Loss of He cooling flow (blower fail)	Х			
Loss of He cooling pressure (leakage)		х		
Loss of He cooling heat exchange			Х	
Decrease of wheel rotational speed				х

4


Pilot TSS Safety Functions

Function	Normal operation
TSS shall achieve safe state if	
target He cooling outlet velocity < 40 m/s	60 m/s
target He cooling outlet pressure < 7 bar	10 bar
target He cooling inlet temperature > 80 °C	40 °C
target shaft rotational speed < 11.6 rpm	23.3 rpm

Pilot TSS Architecture



Pilot TSS System Output

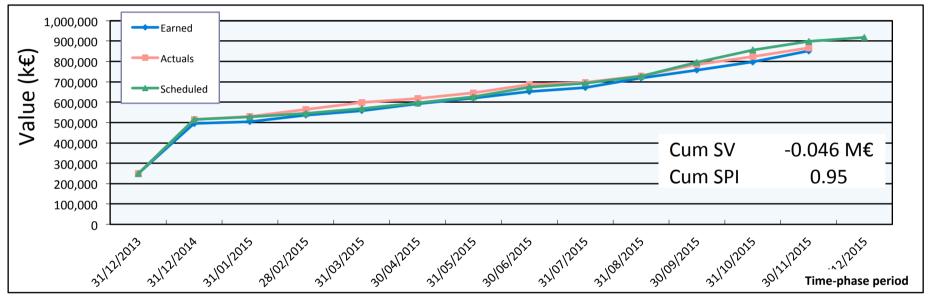
EUROPEAN SPALLATION SOURCE

- Purpose = achieve safe state
- Safe state = no beam on target
- 1. Ion source
 - Contactors to switch off the 400V electrical power supply to the lon source
 - Contactors dedicated to TSS

2. RFQ as a remaining potential redundant solution

Highlights – Hazard Analyses

- *'Radiological Hazard Analysis Process for the ESS Target Station'* document written & under review
- Started radiological Hazard Analysis for all Target Station maintenance activities
 - Wheel/shaft/drive & helium cooling DONE
 - Shielding & plugs primary water cooling DONE
 - Active liquid purification & storage DONE
 - Intermediate cooling systems for water & helium DONE
 - Primary & intermediate water system drain tanks DONE
- Started Accident Analyses for 5 of 21 enveloping events
 - Development of physical parameters for each accident done within each group (ex. Simulation of effects of beam on stopped wheel)
 - Calculate consequence dose to workers and/or public
 - Target wheel release factors and fluid inventories under review
 - ES&H draft of dose-to-workers process provided


Accident Analyses – Selected events

- 1. Target Wheel stop during beam on target
- 2. Beam Event: Focused and non-rastered beam on target
- 3. Loss of Target wheel cooling during beam on Target
- 4. Leakage from Target Cooling circuit into monolith, depressurisation of PCool
- 5. Clogged W channels, local overheating
- 6. Loss of He purification function
- 7. Water leakage from Intermediate Water System into Target He
- 8. Loss of confinement in Target He system release into Utility rooms
- 9. LH2 leakage with explosion/LH2 leakage with local fire
- 10. Water leakage in monolith (highest contamination level)
- 11. Water leakage into connection cell and utility rooms
- 12. NBG/Chopper missile effect on monolith system
- 13. Beam dump high power beam when target in maintenance mode
- 14. Earthquake scenario Target/monolith
- 15. Active Cells: Operator inside maint. cell when sliding door unintentionally opens
- 16. Active Cells: Operator inside process cell next to worst case inventory
- 17. Active Cells: Operator inside maintenance cell next to worst case inventory
- 18. Active Cells: Loss of dynamic confinement (loss of HVAC)
- 19. Active Cells: Loss of confinement process/maintenance open doors
- 20. Active Cells: Fire in Maintenance or Process cell
- 21. Active Cells: Earthquake scenario

Schedule Performance (1 of 2)

• EVMS performance from November

Variance Analysis:

- Cumulative SV of -0.046 M€ (SPI = 0.95) is primarily due to:
 - Delays in progress on hazard analysis uncertainty for TSS design
 - More resources devoted to process control development than originally planned
- Accident analysis completion date later than required need to bring back on schedule
- Focus on TSS-pilot design PDR for mitigation of selected events for wheel and helium cooling systems

Schedule Performance (2 of 2)

EUROPEAN SPALLATION SOURCE

- No milestones achieved since last TTB
- Working toward Pilot-TSS design PDR in February 2016*
- Current forecast dates for all milestones shown below

ID	Name	Planned Date	Current Forecast or Actual	Delay (W.Days)
A77370	PDR – Pilot TSS design	2015-12-10	2016-02-15*	- 2 months
A53380	Hazard Analysis for TSS Completed	2015-05-26	2016-04-19	-10 months
A53480	TSS Logic description complete	2015-09-14	2016-05-19	-8 months
A53560	CDR for TSS	2016-06-08	2017-02-22	-8 months
A63480	Acceptance of Factory Test for TSS	2017-10-27	2018-05-29	-7 months
A77850	On-site TSS Testing Starts (end of Installation)	2018-10-15	2018-10-17	0 month
A63580	End of Tests – TSS integrated with Target systems and Accelerator front end	2019-04-29	2019-10-22	-6 months

Near Term Plans (next 3 months)

- Develop Pilot-TSS design → PDR February 2016
 - Wheel, Target He cooling system evaluate options for instrumentation and find suitable options
 - Finish safety analysis of Pilot-TSS
 - Complete draft of document describing connection between ESS radiation safety classification and IEC61511 design standard for TSS (Zurich)
 - Move Pilot TSS documentation through review/approval process in preparation for PDR
- Prepare for SSM licensing application → due March 2016
- Incorporate final results of Accident Analyses into TSS design
- Coordinate with ICS Division to develop requirements for process controls, machine protection and PSS-Target

Near Term Plans (next 3 months)

- Coordinate execution of accident analyses
- March 2016 deadline for all 21 analyses \rightarrow SSM application
 - Minimum of first five analyses finalized by December
 - Monolith: Wheel stop
 - *Monolith: LH2 fire/explosion*
 - Utility rooms: target Helium release
 - Active Cells: loss of ventilation
 - Active Cells: bi-fold door opens
 - Next priority analyses for TSS design:
 - Loss of He cooling
 - Loss of flow, loss of cooling, loss of pressure, leak into monolith
 - Unrastered and focused beam
 - Localized W heating
 - Water leak in Monolith
 - Beam Dump high power beam
 - Active Cells: Fire & Earthquake

(Wheel, Monolith) (Moderator/Reflector, Monolith) (Target helium cooling system) (Active Cells) (Active Cells)

(He cooling, Wheel, Monolith)

(Wheel, Monolith) (Wheel) (Moderator, Wheel, Monolith) (Monolith/Beam Dump) (Active Cells)

EUROPEAN SPALLATION

SOURCE

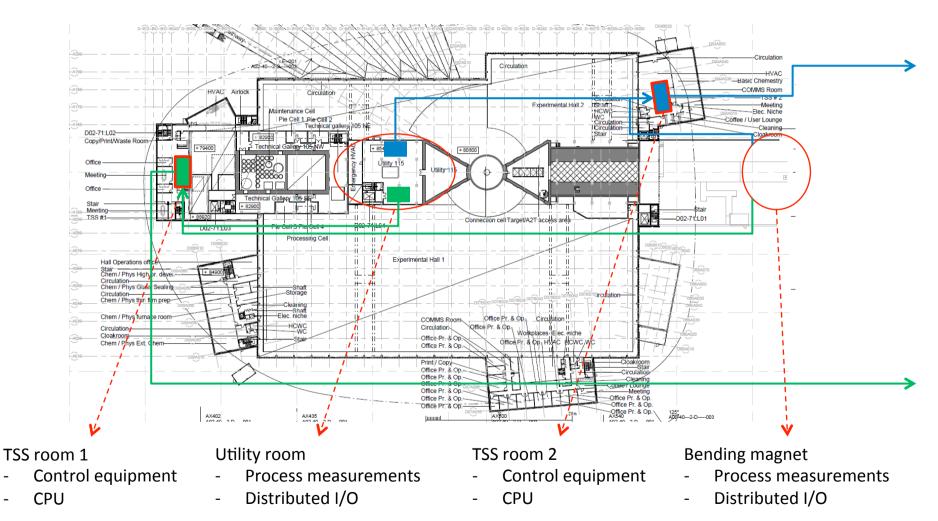
Risks and Issues

• Finalization of TSS system requirements and design depends on completion of accident analysis scenarios

ID	Risk	Treatment	Status
3	Licensing framework for ESS target station is not well defined, or is changed	 Work closely with ES&H division to understand SSM documentation and expectations Participate in Safety Advisory Group (SAG) Complete hazards analysis in a timely manner and perform design basis accident analysis Target division engagement in the development of an ESS-wide safety classification methodology 	 Attend SAG meetings Progressing with Hazard Analyses Progressing with Accident Analyses Documenting Target hazard analysis process Reviewed proposed content for license 2 SSM application
43	Design and interface information given to CF too late	Use the formal documents ICD and ICD-R to communicate the requirements	 TSS-CF ICD written & undergoing review for PDR Regularly meet with CF re. TSS
42	Incompatible controls or missing controls or for Target within ICS	 ICS and Target agree on interface strategy that defines interface points for controls within each of the Target Work Packages 	Clarifying ICS scope for Target

Concluding Remarks

EUROPEAN SPALLATION SOURCE


- WP7 focus is on development of Pilot-TSS design for PDR
- Timely completion of accident analyses critical for establishing TSS requirements and identifying global target station safety certified equipment
 - Analyses depends on effort within all Target system groups, inkind partners, and ES&H
 - Accident analyses results may impact safety requirements for Target systems
 - Results from accident analyses may require new interfaces between TSS and additional target systems

Pilot TSS Infrastructure

-

