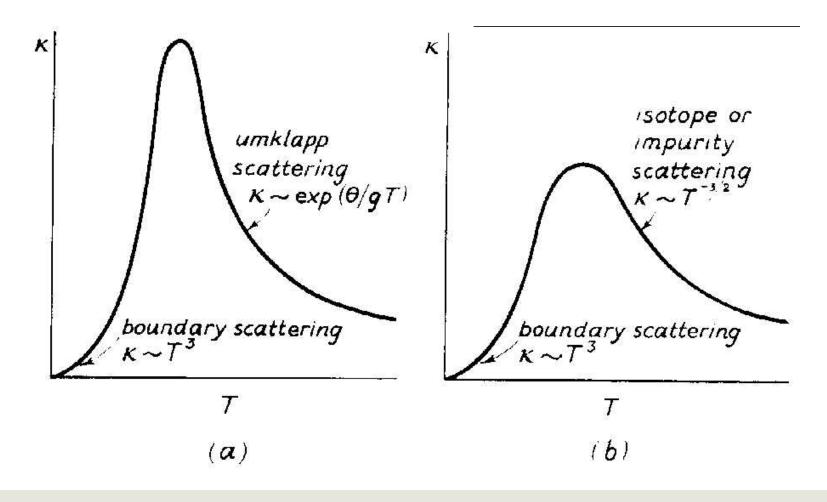
Lecture 4 Cryogenic Properties of Materials : Part II

J. G. Weisend II

Thermal Conductivity of Non Metals

- Insulators: conduction heat transfer is completely caused by lattice vibrations (phonons)
- Semiconductors: conduction heat transfer is a mixture of phonon and electronic heat transfer

Scattering Mechanisms in Phonon Heat Transfer in Crystalline Materials


- Phonon/Phonon scattering (umklapp)
 - $W_u \sim AT^n Exp(-\theta/gT)$
- Boundary scattering
 - $W_B \sim 1/T^3$ at very low temperatures
- Defect scattering
 - W_D~AT^{3/2}
- Dislocation scattering
 - W_{dis}~A/T²

Schematic Thermal Conductivity in Dielectric Crystals

From Low Temperature Solid State Physics – Rosenburg

Lecture 4: J.G. Weisend II

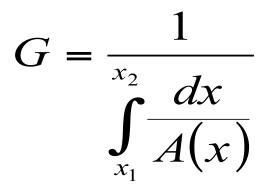
4

Thermal Conductivity of Amorphous Materials

- Mechanism is lattice vibrations
- Thermal conductivity is quite small (lack of regular structure)
- Thermal conductivity is proportional to specific heat and thus decreases with temperature

Thermal Conductivity Integrals

- The strong temperature dependence of K makes heat transfer calculations difficult
- The solution is frequently to use thermal conductivity integrals
- The heat conduction equation is written as:


$$Q = -G(\theta_2 - \theta_1)$$

Thermal Conductivity Integrals

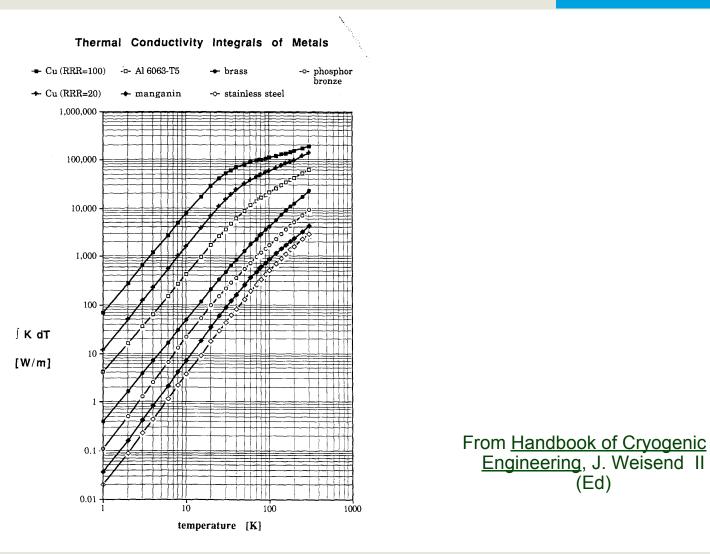
G is the geometry factor

• θ is the thermal conductivity integral

$$\theta_i = \int_0^{T_i} K(T) dT$$

Lecture 4: J.G. Weisend II January 2016 7

Thermal Conductivity Integrals



Advantages:

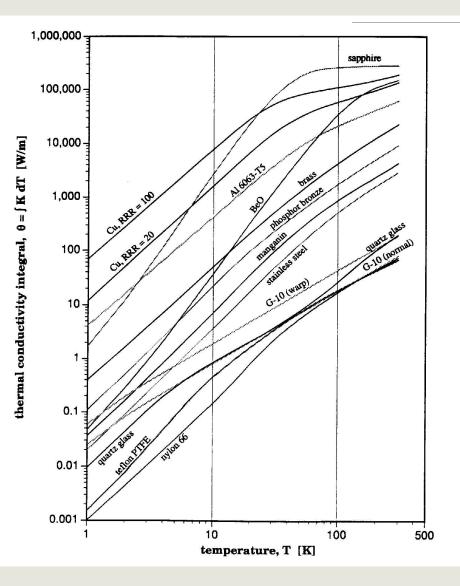
- Simple
- Only end point temperatures are important. (assuming there are no intermediate heat sinks) The actual temperature distribution is not.
- Thermal conductivity integrals have been calculated for many engineering materials
- This is quite useful for heat leak calculations

Thermal Conductivity Integrals of Metals

Lecture 4: J.G. Weisend II January 2016 9

(Ed)

EUROPEAN


SPALLATION SOURCE

ess

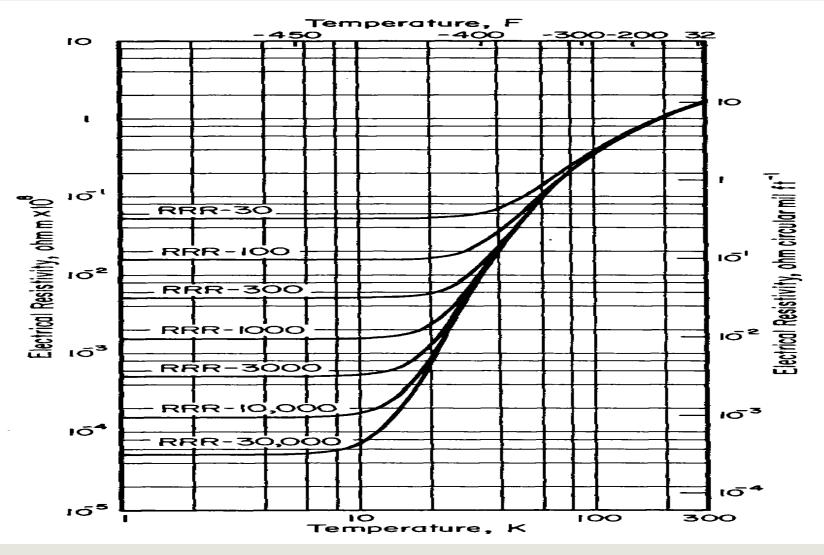
Thermal Conductivity Integrals of Metals & Nonmetals

Lecture 4: J.G. Weisend II January 2016 10

Electrical Resistivity

- Ohm's Law V=IR
 - R= $\rho L/A$ where ρ is the electrical resistivity
- Conduction electrons carry the current & there are 2 scattering mechanisms
 - Scattering of electrons off phonons
 - Scattering of electrons off impurities or defects (e.g. dislocations)

Electrical Resistivity of Metals



- For $T \sim \theta$ phonon scattering dominates
 - ρ is proportional to T
- For T<< θ impurity scattering dominates
 - ρ is constant
- Between these two regions (T~ θ /3)
 - ρ is proportional to T^{5} for metals
- RRR = ρ (300 K)/ ρ (4.2K) an indication of metal purity

Electrical Resistivity of Copper

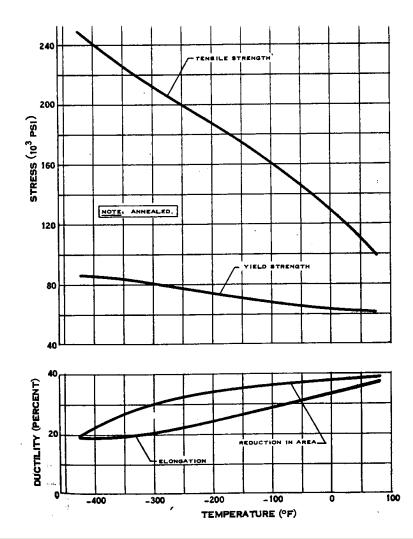

Lecture 4: J.G. Weisend II

Electrical Resistivity of Other Materials

- Amorphous materials & semiconductors have very different resistivity characteristics than metals
- The resistivity of semiconductors is vei decreasing T due to fewer electrons in
- Superconductivity another course

Wiedemann – Franz Law

- In metals, the scattering mechanisms for thermal & electrical conductivity are basically the same
- W-F Law: $K/\sigma = L_0T$
- L_0 is the Lorenz # =2.45 x10⁻⁸ W Ω/K^2
- \bullet This only works at room temp and T << θ



- Tends to increase at low temperatures (as long as there is no ductile to brittle transition)
- 300 K values are typically used for conservative design. Remember all systems start out at 300 K & may unexpectedly return to 300 K.
- Always look up values or test materials of interest

Typical Properties of 304 Stainless Steel From <u>Cryogenic Materials Data Handbook (Revised)</u> Schwartzberg et al (1970)

Lecture 4: J.G. Weisend II January 2016 17

Sources of Data for the Cryogenic Properties of Material

- "A Reference Guide for Cryogenic Properties of Materials", Weisend, Flynn, Thompson; SLAC-TN-03-023 on indico page
- Cryogenic Materials Data Handbook: Durham et al. C13.6/3.961 :
- MetalPak: computer code produced by CryoData
- http://www.htess.com/software.htm
- CryoComp: computer Code produced by Eckels Engineering
- http://www.eckelsengineering.com/
- I will provide needed properties for exams. If you need properties for the projects and can't find them online please see me.