Lecture 7 Heat Transfer & Thermal Insulation

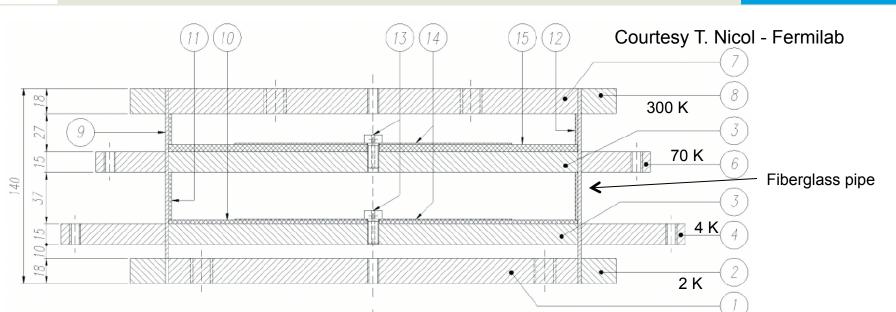
J. G. Weisend II

- Introduce conduction, convection & radiation heat transfer as they apply to cryogenics
- Describe design techniques to reduce heat transfer into cryogenic devices
- Allow the estimating and scaling of heat leaks into cryogenic devices
- Warning! Not a full description of heat transfer
 - Many topics (boiling, detailed convection calculations, complicated geometries in radiation heat transfer etc) won't be covered
 - Should, however, be a good example of how heat transfer theory can be applied to practical problems.

Three Ways to Transfer Heat

- Conduction
 - Heat transfer through solid material
- Convection
 - Heat transfer via a moving fluid
 - » Natural or free convection motion caused by gravity (i.e. density changes)
 - » Forced motion caused by external force such as a pump
- Radiation
 - Heat transferred by electromagnetic radiation/photons
- There is no such thing as a perfect insulator though we can design systems with very small heat leaks
- All matter above 0 K radiate heat
 - Remember we can't get to 0 K 3rd Law of Thermodynamics though we can get vanishingly close
- Heat flows from high temperature to low
 - Heat leaks in, cold doesn't leak out

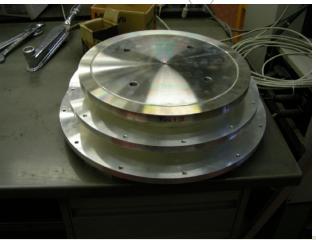
$$Q = -K(T)A(x)\frac{\partial T}{\partial x}$$


If we assume constant cross section we get:

$$Q = -A/L\int_{T_C}^{T_H} K(T)dT$$

- Reduce conduction heat leak by:
 - Low conductivity material: make K(T) small
 - Reduce cross sectional area: make A small
 - Increase length: make L large
 - For a given ${\rm T_C}$ make ${\rm T_H}$ smaller: i.e. use intermediate temperature heat intercepts
 - » You still have heat leak from 300 K to this intermediate temperature but <u>remember</u> <u>Carnot</u>, It's more thermodynamically efficient to remove heat at higher temperatures

SOLIDE


Design Example ILC Cryomodule Support Post

- Total Heat Leak (conduction & radiation)
 - 70 K 10.5 W
 - 5 K 0.9 W

LUND UNIVERSITY

- 2 K 0.03 W
- Can support up to 50 kN

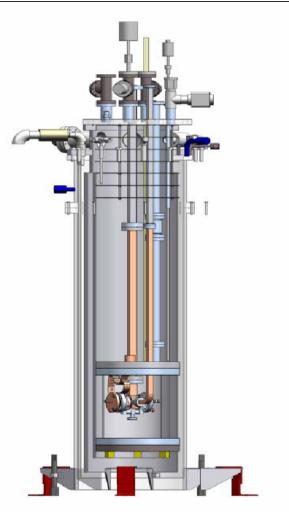
EUROPEAN SPALLATION

SOURCE

Conduction Heat Transfer

 Conduction heat leaks may be estimated by the use of Thermal Conductivity Integrals (Lecture 4)

$$Q = -G(\theta_1 - \theta_2)$$


Fundamental Equation: Newton's law of cooling

 $Q = hA(T_{surface} - T_{fluid})$

- where h is the heat transfer coefficient and is a function of Re, Pr, geometry etc depending on the situation
- In cryogenics we eliminate convection heat leak in cryogenic systems by "simply" eliminating the fluid – vacuum insulation
- Using vacuum insulation to create vessels capable of storing cryogenic liquids was first done by James Dewar – who liquefied hydrogen
 - Such vessels are frequently called dewars though not always, more later
 - Thermos bottles are a simple example of this approach

Design Example Vacuum Insulated Test Cryostat

- Contains 3 Vacuum Spaces
 - 1 between 300 K wall and LN₂ bath
 - 1 between LN₂ bath and LHe bath
 - 1 between LHe bath and experiment

EUROPEAN SPALLATION

SOURCE

Vacuum Insulation

How much vacuum is enough?

- This of course depends on the heat leak requirements but generally we want to be below 10⁻⁵ torr If we maintain this level or better we can generally neglect the convection heat leak for most applications.
 - » <u>Cryogenic Engineering</u>, Flynn (1997) has a good discussion of calculating heat leak due to residual gas pressure

Cryopumping

- At cryogenic temperatures almost all common gases condense and freeze onto the cold surface. Typically, we'll see that once surface are cooled to ~ 77 K the isolation vacuum will drop to the 10⁻⁸ torr or better range if the system is leak tight and doesn't have significant outgassing
- But don't just start cooling with everything at room pressure » Heat leak will likely be too high
 - » Safety hazards due to enrichment of LOX on cold surfaces
 - » Large amounts of condensed gases in vacuum space can lead to other problems including rapid pressure rise upon warming and possible solid conduction
 - » Best practice is to be at least 10⁻³ torr before cooling, lower pressures are better but there may be operational tradeoffs

Outgassing and Getters

- All material outgas into a vacuum. This can raise the pressure in a sealed vacuum space
- Reduce outgassing by:
 - Minimize amount of polymers, wire insulation, FRP etc difficult
 - Keep vacuum surfaces as clean as possible. Remove any oil or cutting fluid, wear gloves etc.
- Getters: materials inserted into vacuum spaces to remove residual gas at low pressures
- In cryogenic systems, getters may be useful in removing residual gas and passively managing small leaks

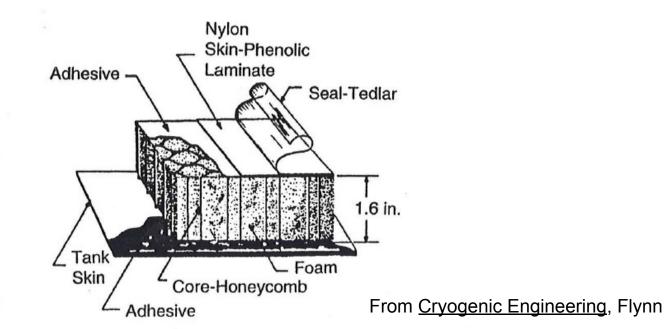
Outgassing and Getters

- 3 types of getters
 - Adsorbers –gas bonds to surface
 - » Activated charcoal, silica gel
 - » Effectiveness increases with decreasing temperature good for cryogenic systems
 - Chemical getters chemical reaction between material and gas
 » Ba & other Alkali metals not very common in cryogenics
 - Solution or absorber getters gas is absorbed in interstitial space of metals » Ti, Zr, Th works well with H_2 , O_2 and N_2
 - » Much better at room temperature
 - » Occasional use in room temperature applications in cryogenic systems

- It turns out that one of the most common and effective materials used for getters of low pressure He gas is activated charcoal made from coconut husks.
- There is a significant amount of this material in the LHC magnet cryostats

The Professor says: "Lets look for the Higgs!"

Lecture 7 | Heat Transfer & Thermal Isolation- J. G. Weisend II



- Not all cryogenic systems use vacuum insulation
- This is particularly true of storage vessels for fluids other than helium
- Reasons for using alternatives to vacuum insulation
 - Cost
 - Weight Space shuttle main tank
 - Required hold time related to size
 - Complex vessel shapes
- Some solutions
 - Expanded closed or open cell foams
 - Rock wool, fiberglass or other porous material
- These all require vapor barriers to prevent air from being pulled into the insulation and condensed (can cause both a safety hazard via O₂ enrichment & reduce effectiveness)

Design Example: Complex Foam Insulation System: LH₂ Tank for 2nd Stage Saturn V

- Allows helium purging of the insulation
- Weight ~ 4.15 kg/m²
- Performance: measured effective thermal conductivity (0.86 1.1 mW/ cm K) at T_{av} = 144 K Note this includes conduction, convection and radiation heat transfer

EUROPEAN SPALLATION

SOURCE

- Frequently the largest source of heat leak to cryogenic systems
- Fundamental Equation: Stefan-Boltzmann Law energy emitted from an ideal black body: $E_b = \sigma T^4$ where $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$
 - Real world Assumptions:
 - » Emissivity (ϵ) << 1 and independent of wavelength (grey body)
 - » Two parallel infinite plates: Radiative heat flux (W/m²)

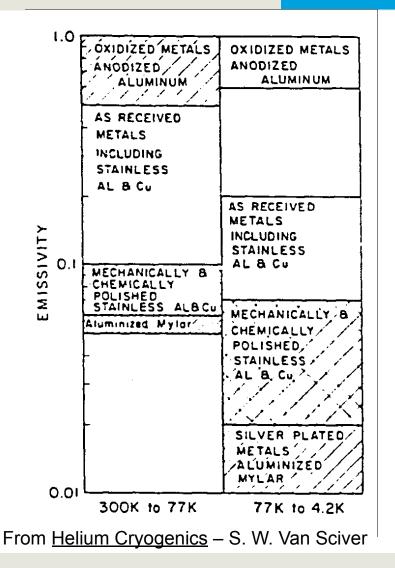
Eq. A
$$q_r = \left(\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2}\right) \sigma \left(T_1^4 - T_2^4\right)$$

» Frequently in cryogenic systems $\epsilon_1 \sim \epsilon_2 << 1$ then Eq. A becomes:

Eq. B
$$q_r = \left(\frac{\varepsilon}{2}\right) \sigma \left(T_1^4 - T_2^4\right)$$

Radiation Heat Transfer

- EUROPEAN SPALLATION SOURCE
- » Two long concentric cylinders or concentric spheres (1 represents the inner cylinder): the radiative heat flux (W/m²) on the inner cylinder is


Eq. C
$$q_1 = \left(\frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \left(\frac{A_1}{A2}\right)\left(\frac{1}{\varepsilon_2} - 1\right)}\right)$$

» Note as is frequently the case in cryogenics, if the spacing between the cylinders is small compared to the inner radius (i.e. $A_1 \sim A_2$) Eq. C becomes Eq. A

Radiation Heat Transfer

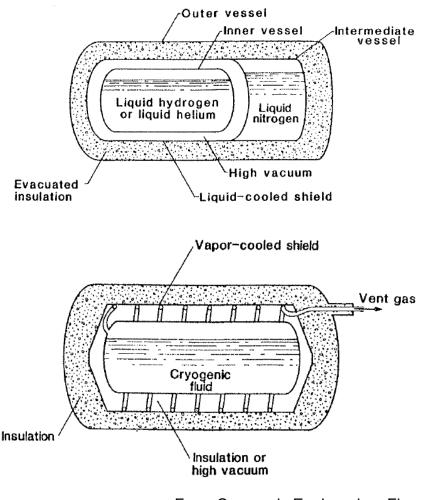
- Looking at Eq. A, How do we reduce the radiation heat transfer?
- We could reduce the emissivity (ε)
 - This is done in some cases; using either reflective tape or silver plating
 - Better below 77 K
 - It's also part of MLI systems (see below)
 - We have to consider tarnishing
 - May be labor intensive

Lecture 7 | Heat Transfer & Thermal Isolation- J. G. Weisend II

EUROPEAN SPALLATION SOURCE

Radiation Heat Transfer

- Another way to reduce radiation heat transfer is to install intermediate actively cooled radiation shields that operate at a temperature between 300 K and the lowest cryogenic temperature. This has several advantages.
 - It greatly reduces the heat load to the lowest temperature level
 » Assume parallel plates with ε = 0.2
 » then from Eq. B q (300 K 4.2 K) = 46 W/m² while q (77 4.2) = 0.2 W/m²
 - It allows heat interception at higher temperatures & thus better Carnot efficiency
 - Such an actively cooled shield provides a convenient heat intercept for supports, wires etc to reduce conduction heat leak.
- Shields may be cooled by
 - Liquid baths (LN₂)
 - Vapor boil off from stored liquid common in LHe storage dewars
 - Cooling flows from refrigeration plants
 - Conductive cooling via small cryocoolers



Examples of Cooled Radiation Shields

- LN₂ bath surrounds inner LHe or LH₂ bath
- Baths are separated by a vacuum insulation space
- Shield is cooled by boil off gas from stored cryogen
 - Spacing of cooling tubes on shield may be calculated by: ΔT = qL²/2kt

 - » q = heat flux on shield
 - » k = shield thermal conductivity
 - » L = $\frac{1}{2}$ max tube spacing
 - » t = shield thickness

From Cryogenic Engineering, Flynn

Thermal Radiation Shields

- Uncooled thermal radiation shields placed in a vacuum space between the warm & cold surfaces also help reduce the thermal radiation heat leak
- It can be shown (with the grey approximation and equal emissivities) that with N shields thermal radiation heat transfer is given by:

$$q = \frac{\varepsilon}{(N+1)2} \sigma \left(T_{H}^{4} - T_{L}^{4} \right)$$

This is the motivation behind Multilayer Insulation