
J. G. Weisend II 

Lecture 8 
Thermal Insulation & Cryostat Design (Part I) 



§ Complete description of systems to reduce radiation heat transfer 
§ Discuss design requirements for cryostats 
§ Describe options for cryostat supports 
 

 

Goals 
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§ Uncooled thermal radiation shields placed in a vacuum space between 
the warm & cold surfaces also help reduce the thermal radiation heat 
leak 

§ It can be shown (with the grey approximation and equal emissivities) 
that with N shields thermal radiation heat transfer is given by: 

Thermal Radiation Shields 
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This is the motivation behind Multilayer Insulation 



§ Also referred to as superinsulation  
§ Used in the vacuum space of  many cryostats (10-5 torr or better 

for best performance) 
§ Consists of highly reflective thin sheets with poor thermal contact 

between sheets. 
• Made of aluminized Mylar ( or less frequently Kapton) 
• May include separate non conducting mesh 
• May use Mylar aluminized on only one side and crinkled to allow only point 

contacts between sheets 
• Frequently perforated to allow for better pumping 

§ Can be made up into blankets for ease of installation 
§ Don’t pack MLI too tightly. Optimal value is ~ 20 layers / inch 
§ Great care must be taken with seams, penetrations and ends. 

• Problems with these can dominate the heat leak 

MultiLayer Insulation 
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MLI 
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MLI Example from LHC cryostats 
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“SERIES-PRODUCED HELIUM II CRYOSTATS 
FOR THE LHC MAGNETS: TECHNICAL CHOICES, 
INDUSTRIALISATION, COSTS” 
A. Poncet and V. Parma 
Adv. Cryo. Engr. Vol 53 



§ Radiation heat transfer may also be reduced by filling the vacuum 
space between 300 K and cryogenic temperatures with other materials 
that are low conductivity and block line of sight 

§ Such materials include: 
• Glass beads or microspheres 
• Perlite powder (made from a volcanic rock) 
• Opaciated powders – copper or other metallic flakes mixed in with other 

powders to further reduce radiant heat transfer 
• Aerogel 

§ Advantages: 
• Cheaper 
• Easier to install in complex shapes 
• Better performance than MLI in poor or no vacuum 

§ Frequently used in large storage and transport dewars 
 

Porous Insulation 
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The  total heat transfer through porous insulation between 2 spheres 
may be estimated by: 

 
 
§ Where 

•  t = thickness of Insulation 
•        = the mean thermal conductivity 
• 1  = inner vessel and 2 = outer vessel 

§ Mean thermal conductivities may be found in references such as  
Cryogenic Engineering by Flynn 

Porous Insulation 
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Total Heat Flux ( W/m2) 
Type of Insulation 300 K to 77 K 77 K to 20 K 

Polystyrene Foam (2 lb/ft3) 48.3 5.6 
Gas Filled Perlite powder 
(5 – 6 lb/ft3  filled with He) 

184.3 21.8 

Perlite powder in vacuum 
(5 – 6 lb/ft3) 

1.6 0.07 

High Vacuum  
(10-6 torr ε = 0.02) 

9 0.04 

Opacified powder  
(Cu flakes in Santocel) 

0.3 - 

MLI 0.03 0.007 

Comparison of Thermal Insulation Approaches 
( 6 inch thick insulation in all cases) 
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Increasing Cost  
& Complexity 

From Cryogenic  Systems – Barron 
For rough estimates only 

Note better 
performance of 

evacuated 
Perlite over 

high vacuum 
between 300 K  

& 77 K 



§ What is a cryostat? 
• A device or system for maintaining objects at cryogenic temperatures. 

§ Cryostats whose principal function is to store cryogenic fluids are 
frequently called Dewars. Named after the inventor of the vacuum flask 
and the first person to liquefy hydrogen 

Cryostat Design 
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“Sir James Dewar is a better man 
than you are 

None of you asses can liquefy gasses” 
        Anon. 

 
 

Which Brings Us to a Limerick 
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Cryostat Design 
§ Cryostats are one of the technical building blocks of cryogenics 
§ Cryostat design involves many subtopics: 

• Development of requirements – covered here 
• Materials selection – already covered 
• Thermal insulation  - already covered 
• Support systems – covered here 
• Safety – covered in a future lecture 
•  Instrumentation – covered in a future lecture 

§ One of the best ways to learn about cryostat design is through 
examples 

§ There are many different types of cryostats with differing 
requirements 
• The basic principles of cryostat design remain the same 
• Before we can do anything else we have to define our requirements 
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E158 LH2 Target Cryostat 
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§ Maximum allowable heat leak at various temperature 
levels 
• This may be driven by the number of cryostats to be built as 
well as by the impact of large dynamic heat loads (SCRF or 
target cryostats) 

§ Alignment  and vibration requirements 
• Impact of thermal cycles 
• Need to adjust alignment when cold or under vacuum? 
• Alignment tolerances can be quite tight (TESLA :  
+/- 0.5 mm for cavities and +/- 0.3 mm for SC magnets) 

§ Number of feed throughs for power, instrumentation, 
cryogenic fluid flows, external manipulators 

Cryostat Requirements 
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§ Safety requirements (relief valves/burst discs) 
• Design safety in from the start. Not as an add on 

§ Size and weight  
• Particularly important in space systems 

§ Instrumentation required 
• Difference between prototype and mass production 

§ Ease of access to cryostat components 
§ Existing code requirements (e.g. TUV or ASME) 
§ Need, if any, for optical windows 
§ Presence of ionizing radiation 
 

Cryostat Requirements 
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§ Expected cryostat life time 
§ Will this be a one of a kind device or something to be 
mass produced? 
§ Schedule and Cost 

• This should be considered from the beginning 

All Design is Compromise 

 

 

Cryostat Requirements 

Lecture 8| Thermal Insulation & Cryostat Design (Part I)- J. G. Weisend II 

Slide 16 February 2016 



§ Solution is highly dependent on cryostat requirements 
§ Choose materials carefully 

• Acceptable for cryogenic temperatures 
• Low heat leak 

§ Don’t over constrain supports: allow for thermal 
contraction 
§ Does solution meet alignment and vibration 
requirements? 
§ Must alignment be changed while cold? 

Structural Supports 
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Structural Support Example #1 
ILC Cryostat 

§ FRP support between 300 
K and Cryo temps 

§ Cavity assemblies tied to 
300 mm pipe backbone 

§ All other connections to 
300 K have flex line or 
bellows in line 

§ Meets alignment specs 
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Structural Support Example #2 
JLab 12 GeV Upgrade Cryomodule 

§ All components are tied to 
space frame which rolls into 
vacuum vessel 

§ Connections to 300 K done via 
flex lines and bellows 

Lecture 8| Thermal Insulation & Cryostat Design (Part I)- J. G. Weisend II 

Slide 19 February 2016 



Structural Support Example #3 
Simple Top Load Cryostat 

§ Very common for test  cryostats 
§ Everything hangs from 300 K top 

flange 
§ Connections made via low 

conductivity piping and supports 

§ Everything “contracts up” 
§ Allows easy removal and change of 

cryostat components 
§ Useful when precise alignment not an 

issue 
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Structural Support Example #4 
FRIB Cryomodules 
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Courtesy M. Johnson et al. - FRIB 


