Lecture 11 Cryocoolers (Part II)

J. G. Weisend II

Discuss Pulse Tube Cryocoolers

- GM and Stirling cycle cryocoolers using oscillating flows at 1 100 Hz
- The cold displacer plays an important role in these devices
 - Separate the heating and cooling effects of the cycle by placing the motion of the gas in proper phase with the pressure oscillations
 - Little pressure difference across the displacer but a large temperature difference
- However the cold displacer leads to a number of problems
 - Moving cold part leads to reliability problems and increased vibration at cold end
 - Axial heat conduction through the displacer leads to cycle inefficiencies
- What if we could eliminate the displacer ?

Pulse Tube Cryocoolers

- The gas in the pulse tube in effect replaces the displacer
- The pulse tube must be large enough so that the gas in cold end never reaches the warm end and gas in cold end never reaches the warm end
 - Thus gas in the middle of tube never leaves the tube and acts as an thermal insulator
 - Turbulence & mixing must be minimized
 - From this simple design there are many variations of pulse tube cryocoolers

- High reliability (fewer cold moving parts)
- Lower cost
- Low vibration
- Higher efficiency
- Ability to work at all temperature levels
- Can be "space qualified"
- These advantages and the fact that there is still much to learn about pulse tubes make this a very active area of research
 - Roughly 10% of all the papers at the 2009 Cryogenic Engineering Conference dealt with pulse tube cryocoolers
- Commercial versions of pulse tube cryocoolers are available

- Regenerator inefficiency (generally the largest single loss)
- Losses within the pulse tube itself
 - Heat transfer between gas and tube wall
 - Mixing of warm and cold gas segments
 - Circulation of gas within the pulse tube due to oscillating pressures (acoustic streaming)

- Double Inlet
 - Roughly 10% of the flow is bypassed around the regenerator and used to pressurize the reservoir
 - Reduces losses in the regenerator
 - Increases overall efficiency particularly at higher frequency operations
 - Presence of inertance tube (also used on other styles of PT cryocoolers) helps put the flow and pressure oscillations into a phase relationship that optimizes efficiency

Thermoacoustic Drivers

Can result in cryocoolers with no moving parts Generally only used in very large scale systems

Figure 5. Schematic of ThermoAcoustically Driven Orifice Pulse Tube Refrigerator (TADOPTR)

R. Radebaugh – NIST

Lecture11 | Cryocoolers (Part II)- J. G. Weisend II February 2016 Slide 8

ultistage Cryocolers Are Also Commo

From Kasthurirengen et al Proc. ICEC 22 (2009)

First Tube and other Cryocoler % Carnet Lund NIVERSITY

Pulse Tube Cryocooler Commercially Available Examples

CryoMech PT810 • 14 W @ 20 K • 80 W @ 80 K

CryoMech PT415 • 40 W @ 45 K

- 1.5 W @4.2 K

EUROPEAN SPALLATION

SOURCE

Pulse Tube Cryocooler Commercially Available Examples

- SHI Cryogenics SRP-062B
 - 30 W @ 65 K
 - 0.5 W @ 4.2 K
 - 6.5 kW power

input

- Sierra Lobo
 - 4 W @ 65 K
 - 4 W @ 20 K
 - Can be used for

Zero Boil Off Propellant Storage

EUROPEAN SPALLATION

SOURCE

Example of PT Use Atacama Cosmology Telescope

Lecture11 | Cryocoolers (Part II)- J. G. Weisend II February 2016 Slide 14

Example of PT use LNG production using a TADOPTR

No moving parts burns 1/3 of natural gas stream to liquefy the rest

Figure 12. TADOPTR natural gas liquefier (600 L/day, 2.0 kW at 120 K)

From R. Radebaugh NIST

EUROPEAN SPALLATION

SOURCE

Space Applications

19 W @ 90 K 222 W input power

Figure 10. Pulse tube refrigerator for studies of liquefying oxygen on Mars (580 mm total length)

Both figures From R. Radebaugh Proc. Instit. of Refrig. 0.5 W @ 55 K

Figure 11. Pulse tube refrigerator for Integrated Multispectral Atmospheric Sounder (space appl.)

Space Applications

2.3 W @ 53 K and 8 W @ 183 K Designed for sensor cooling on NASA GOES-R Satellite

Colbert et al. Cryocoolers 15 (2009)

Cryocooler Cold Plates Instrument Electronics Cryocooler Compressors Cryocooler 190 K Radiator Electronics 150 K Radiator Pulse Tube Vacuum Housing Focal Plane Dewar Assembly Scan Mirror Assembly 150 K Spectrometer Deployable **Optical Bench Assembly** Earth Shield

> 0.5 W @ 58 K Atmospheric Infrared Sounder On orbit for the last 6 years

> > Ross et al. Cryocoolers 15 (2009)

Lecture11 | Cryocoolers (Part II)- J. G. Weisend II February 2016 Slide 17

- Pulse tube cryocoolers have a number of advantages and are being applied in many different technical areas.
- Their potential for low vibration and high reliability make them particularly attractive to space applications
- They are a very active area of cryogenic research
- Some additional online resources for pulse tubes and other types of cryocoolers are:
 - http://www.cryocooler.org/ Contains online proceedings of the International Cryocooler Conferences
- http://www.elsevier.com/wps/find/journaldescription.cws_home/30407/ description#description Online link to the journal *Cryogenics* which includes proceedings of the Space cryogenics Workshops