Lecture 14 Superconducting Magnets

J. G. Weisend II

- **Describe the basics of superconducting magnet design**
	- Cooling approaches
	- Stability
	- Quench detection & protection
- § Illustrate superconducting magnet design by reviewing 2 case studies: The LHC dipole magnets and the BaBar detector solenoid
- § Note that many of the slides here have been graciously provided by L. Bottura of CERN.

Magnet Cooling Options

- § There are a variety of ways to provide cooling for superconducting magnets. These include:
	- Saturated Bath cooling in He I or He II
	- Subcooled baths of He I (Tevatron) or He II (LHC)
	- Forced flow cooling of Cable-in-Conduit Conductors (CICC) by supercritical helium (many Tokamak magnets)
	- Indirect cooling via conduction from a forced flow of helium through a cooling channel (BaBar solenoid) or by a small cryocooler

Examples of Various Magnet Cooling Options

From: "Technology of Cryogenics for Storage Rings" H. Lierl, EPAC 98

Lecture 14 | Superconducting Magnets - J. G. Weisend II

February 2016 Slide 4

- When a wire in a s/c magnet undergoes a temperature rise, there are 2 possibilities:
	- It can cool back down and remain superconducting
	- It can warm up above Tc and "quench" (become normally conducting in all or most of the magnet)
- § Which one occurs depends on the amount of heat generation and cooling

A prototype temperature transient

Perturbation spectrum

mechanical events

- **n** wire motion under Lorentz force, micro-slips
- **n** winding deformations
- n failures (at insulation bonding, material yeld)
- **e** electromagnetic events
	- ⁿ flux-jumps (important for large filaments, old story !)
	- AC loss (most magnet types)
	- ⁿ current sharing in cables through distribution/redistribution
- \blacksquare thermal events
	- **n** current leads, instrumentation wires
	- n heat leaks through thermal insulation, degraded cooling
- nuclear events
	- **n** particle showers in particle accelerator magnets
	- neutron flux in fusion experiments, separator magnets

Lecture 14 | Superconducting Magnets - J. G. Weisend II 7

February 2016

- § Fully cryostable: magnet will recover regardless of size of normal zone (disturbance) May be true of large detector magnets e.g BaBar detector or MRI magnets, but generally magnets are conditionally stable up to some heat input level.
- \blacktriangleright Adiabatic stability: magnet will recover if heat input is not too big \blacktriangleright more typical of accelerator magnets or potted-coil magnets

Stability of Superconducting Magnets(2)

Why not make all magnets cryostable?

S800 dipole coil

A1900 dipole coil

S800 dipole coil took 6 weeks to wind A1900 dipole coil took 2 days

February 2016 Slide 10 Lecture 14 | Superconducting Magnets - J. G. Weisend II

§ Stekley Criteria – most conservative, doesn't account for end cooling

$$
\alpha = \frac{\rho I^2}{hPA(T_c - T_b)}
$$

 α < 1 magnet is stable

■ Equal area theorem

- Takes into account the cooling of the conductor via conduction at the ends
- Can be expressed as a graphical solution comparing the areas under the cooling and heating curves (see references)

- ■Superconducting magnets store large amounts of energy either individually (20 MJ for the Babar detector magnet) or connected in series (10's of GJ)
- •If all the energy is deposited in a small volume, bad things happen!

- •The goal is to rapidly and accurately detect the quench and safely dispose of the energy
	- Spread throughout the magnet
	- In an external dump resistor
	- In a coupled secondary
	- In magnet strings, bypass the energy of the other s/c magnets away from the quenching one
- Remember it's the stored energy in the magnet(s) not the power supply that's problem (S/C magnet power supplies are low voltage, high current, so increased resistance in a quenched magnet prevent further power input)

- Can't just measure voltage directly as magnet ramping causes voltage and give a false signal
- The general approach is to subdivide the magnet with voltage taps and build a bridge circuit that cancels out voltage due to ramping
- ■Redundant QD systems are necessary
- Other measurements such as temperature, helium level or vacuum level might be used to look for precursors to trouble but take care not to "over interlock the magnet"
- ■HTS magnets are of special concern due to slow quench propagation, so sensitive QD required

Strategy: energy dump

$$
R_{\text{dump}} >> R_{\text{quench}}
$$

normal operation

quench

 \blacksquare the magnetic energy is extracted from the magnet and dissipated in an external resistor:

$$
I = I_{op} e^{-\frac{\left(t - \tau_{detection}\right)}{\tau_{dump}}} \qquad \tau_{dump} = \frac{L}{R_{dump}}
$$

 \blacksquare the integral of the current:

$$
\int_{0}^{\infty} J^{2} dt \approx J_{op}^{2} \left(\tau_{detection} + \frac{\tau_{dump}}{2} \right)
$$

- can be made small by:
	- fast detection
	- fast dump (large R_{dump})

Strategy: heaters

- the quench is spread actively by firing heaters embedded in the winding pack, or in close vicinity to the conductor
- heaters are mandatory in:
	- high performance, aggressive, cost-effective and highly optimized magnet designs (high current density)…
	- ... when you are really desperate

- advantages:
	- homogeneous spread of the magnetic energy within the winding pack
- **n** disadvantages:
	- active
	- high voltages at the heater
	- Doesn't work well with

Lecture 14 | Superconducting highly stable magnets Magnets - J. G. Weisend II 16

Magnet strings

- magnet strings (e.g. accelerator magnets, fusion magnetic systems) have exceedingly large stored energy (10's of GJ):
	- n energy dump takes very long time $(10...100 s)$
	- the magnet string is *subdivided* and each magnet is bypassed by a diode (or thyristor)
	- \blacksquare the diode acts as a shunt during the discharge

Lecture 14 | Superconducting Magnets - J. G. Weisend II 17

Superconducting dipole magnet coil

Ideal current distribution that generates a perfect dipole "Cos Θ"

Practical approximation of the ideal distribution using Rutherford cables

Lecture 14 | Superconducting Magnets - J. G. Weisend II 19

February 2016

Twin coil principle

Combine two magnets in one Save volume, material, cost Lecture 14 | Superconducting Magnets - J. G. Weisend II

February 2016

Ends, transitions, and any deviation from the regular structure are the most delicate part of the magnet

February 2016

Collaring and yoking

February 2016

Thermal sereen superconducting Magnets - J. G. Weisend II 26

Finally, in the tunnel !

Example 2 BaBar Detector S/C Solenoid

§Provided background field for particle identification for the BaBar detector at SLAC

§Physics requirements dictated a relatively thin solenoid

Properties of BaBar Solenoid

- §Field: 1.5 Tesla
- §Stored Energy: 27 MJ
- §Operating Current: 4596A
- \blacksquare Tc= 8.3K
- Operating Temp: 4.5K

- §Total Heat Load at 4.5K: 225liquid-liters/hr
- Cryogenics: indirectly cooled using the force flow technique where the liquid He is circulated in cooling pipes welded to the outside diameter of the support tube
- Uses NbTi highly stabilized by a pure AI conductor

BaBar Detector Under Construction

BaBar Detector

- Operated almost continuously for \sim 10 years
- § Was very stable only discharged due to loss of power, controls or cooling
	- Availability was > 96% from the start and better than 98% during final 3 years
		- » Improvement due mainly to removing unnecessary interlocks and adding additional utility backups
- May still be used as part of the proposed Super B project in Italy

Conclusions

- Superconducting magnets make possible modern technology including HEP accelerators, MRI Systems and heavy ion machines such as NSCL, FRIB and FAIR.
- Superconducting magnet design involves detailed engineering on a scale from the microscopic (flux pinning) to the immense (multi ton, GJ magnets)
- Superconducting magnet design involves a wide range of disciplines: materials science, electrical engineering, mechanical design, cryogenics etc.
- §Superconducting magnet requirements have driven and enabled many advances in s/c materials, wire and ancillary systems