Lecture 16 Instrumentation

J. G. Weisend II

- Describe measurements & instrumentation in cryogenic systems
- Give examples of typical temperature, pressure, flow and level sensors used in cryogenic systems
- Discuss the proper installation of sensors, wiring and feed throughs in cryogenic instrumentation

Introduction

- The correct measurement of properties such as temperature, pressure, flow, level and vacuum in cryogenic systems is a key factor in the success of cryogenic systems.
- Measurements will allow us to understand if our cryogenic components are working properly, enable us to control them and permit the collection of scientific data.
- There are many subtleties in the selection and installation of cryogenic sensors.
 - Poor sensor selection and installation can result in wildly inaccurate readings or sensor failure
- Think about instrumentation as a complete system sensor, wiring, feed through, DAQ rather than just the sensor itself.
 - Total system cost per measuring point can be ~ \$500 \$1000

Introduction

- Define system & sensor requirements:
 - •Range
 - Accuracy
 - Time response
 - Sensor environment (e.g. presence of magnetic or radiation fields)
 - Precision what is the smallest change detected by the sensor?
 - Reliability
 - Cost

- Don't use more accuracy & precision than required
- Use commercially produced sensors whenever possible there is a lot available
- When possible, mount sensors outside cryostat at 300 K (e.g. pressure transducers, flow meters)
- For critical devices inside of cryostats, install redundant sensors whenever feasible
- Be sure to consider how to recalibrate sensors
- If at all possible avoid, cold instrumentation feed throughs
 SNS experience
- Once R&D is done, minimize number of sensors in series production of cryostats

- Measure some property typically resistance or voltage drop that changes with temperature
- Commercial Temperature Sensing Options
 - Silicon Diodes (300 K ~1 K)
 - Pt Resistors (300 K ~ 30 K)
 - Ge Resistors (100 K < 1 K)
 - Carbon Glass resistors (300 K ~ 1 K) best below 100 K
 - Ruthenium Oxide (40 K < 1 K)
 - Cernox (300 K < 1 K)
 - Thermocouples
- Take care not to put so much power in the sensor that it "self heats" and gives a false reading. Follow the vendor's recomendations

Cernox Temperature Sensors LakeShore Cryotronics

Very responsive at LHe Temps

Expensive

Requires individual calibration for best results

Very good in ionizing radiation environments

EUROPEAN SPALLATION

SOURCE

Si410 Silicon Diode Scientific Instruments

Can both be individually calibrated or used with typical curves Relatively low cost, frequently used in cryogenic plants Not suitable for radiation environments

Platinum Resistors

Good down to ~ 30 K Works well in ionizing radiation fields Can be calibrated with good accuracy to common calibration curves Relatively low cost Excitation is generally 1 mA DC

From Lakeshore Cryotronics Catalog

- Four wire measurements (V+, V-, I+,I-) should be used for temperature sensors to avoid impact of lead resistance on measurement'
- Wires should be in twisted pairs (V+,V-) and (I+,I-) to reduce noise pickup
- Wires will connect from 300 K to cryogenic temperatures so must be have small cross sections, and low thermal conductivity
 - 36 gage manganin wire is a frequent choice » see thermal conductivity integrals
 - Avoid using wires that are too fine as this will result in breakage and poor reliability
 - Heat sink wires at an intermediate temperature
- Don't over constrain the wires allow room for movement and shrinkage during cool down to avoid breakage

Heat Sinking of Wires

- Critical to the proper use of temperature sensors in vacuum spaces
 - You want to measure the temperature of the sensor not that due to heat leak down the wire
 - Small heat capacities at cryogenic temperatures means small heat leaks can easily impact sensor temperature
 - Heat sink wire at intermediate temperature and also at point where temperature is measured

Required Wire Heat Sinking for Proper Temperature Measurement

Table 4-3 Wire heat-sinking lengths required to thermally anchor to a heat sink at temperature T to bring the temperature of the wire to within 1 mK of T

Material	<i>T</i> 1 [K]	<i>T</i> s [K]	Heat-sinking length, L_2 (mm) for wire sizes			
			0.21 mm ² (24 AWG)	0.032 mm ² (32 AWG)	0.013 mm ² (36 AWG)	0.005 mm ² (40 AWG)
Copper	300 300	80 4	160 688	57 233	33 138	19 80
Phosphor- Bronze	300 300	80 4	32 38	11 13	6 7	4 4
Manganin	300 300	80 4	21 20	4 7	4 4	2 2
304 ss	300 300	80 4	17 14	6 5	3	2 2

Note: Values are calculated assuming wires are in a vacuum environment, and the thermal conductivity of the adhesive is given by the fit to the thermal conductivity of GE 7031 varnish.

From "Cryogenic Instrumentation" – D.S. Holmes and S. Courts Handbook of Cryogenic Engineering

Lecture 16 | Cryogenic Instrumentation - J. G. Weisend II

- Carry out at room temperature where possible (using a capillary tube)
- Problems with room temperature pressure measurement
 - Thermal Acoustic Oscillations (recall Lecture 13)
 - Time response will be too slow for high speed transients but for most operations this isn't an issues
 » High speed pressure pulse due to magnet quenching is an exception
- Some cold pressure transducers exist that solve these problems
- There are a wide range of 300 K commercial pressure transducers that exist
 - Many are based on capacitive sensors or strain gage bridges mounted on diaphragms that change shape with pressure

MKS Baratron Pressure Transducer

Dimensional Drawing — Note: Unless otherwise specified, dimensions are nominal values in inches (mm referenced).

300 K operation Uses a capacitive sensor Accurate up to 0.3 % of reading

Flow Measurements

- A variety of techniques are available mostly the same ones as used in standard fluid mechanics including:
 - Venturi Meters
 - Turbine Flowmeters
 - Coriolis Flowmeters
 - Orifice plate Flowmeters
- Comments
 - Insure that the devices are calibrated for operation at the temperatures and pressures that you are expecting (use appropriate fluid properties)
 - Beware of situations that can result in unplanned two-phase flow
 - Allow sufficient length for flow straightening if required (e.g. Venturi)
 - If possible install the flow meters in the 300 K portions of the flow

Venturi Flow Meter

Note use of cold DP transducer A more common approach is to use capillary tubes and a warm transducer

From The Handbook of Cryogenic Engineering

Lecture 16 | Cryogenic Instrumentation - J. G. Weisend II

EUROPEAN SPALLATION SOURCE

Coriolis Flow Meter

Figure 1 Coriolis meter sensor and transmitter

Figure 2 Coriolis flow meter operation

Tested down to 1.7 K at CERN LHC Flow produces vibrations in the flow tubes that have a phase offset directly related to mass flow

From Development of a mass flowmeter based on the Coriolis acceleration for liquid, supercritical and superfluid helium de Jonge T. et al. <u>Adv. Cryo. Engr. Vol 39 (1994)</u>

Lecture 16 | Cryogenic Instrumentation - J. G. Weisend II

Level Measurements

- Measuring the level of cryogenic baths is important to proper operations
- Options include:
 - Capacitance gauges (LN₂, LOX, LH₂)
 - Superconducting level probes (LHe)
 - Differential pressure techniques
 - Floats (LN₂)

Lecture 16 | Cryogenic Instrumentation - J. G. Weisend II

Feedthroughs

- Instrumentation feedthroughs are best done at 300 K
- Avoid cryogenic instrumentation feedthroughs if at all possible
 - If you can't, significant testing and validation will be needed
- In test and prototype cryostats always put in more feedthroughs (or blank flanges) than you think you'll need
- GHe at 300 K and 1 bar has poor dielectric strength use spacing of pins or potting of feedthrough if this will cause problems (e.g. in voltage taps of S/C magnets)
- Beware of possible thermal acoustic oscillations being set up in pressure taps and other sealed tubes

Commercial Sources of Cryogenic Instrumentation

- Don't reinvent the wheel there is a lot already available. Catalogs can help you choose the correct sensor for your application
- Two US Sources:
 - Lakeshore Cryogenics http://www.lakeshore.com/
 - Scientific Instruments

http://www.scientificinstruments.com/

- Possible Cold Pressure Transducers
 - <u>http://www.omega.com/</u>
 - <u>http://www.gp50.com/</u>