Supercondu ctivity in Particle Accelerators

> SRF Cavities for Acceleration Stephen Molloy, ESS 8th Feb., 2016

The next 45 minutes of your life

- 1.Acceleration of charged particles
- 2.Some basics of RF cavities
- 3.Superconductivity
- 4. Implications for cavity design
- 5. Current state-of-the-art and active research

Acceleration of charged particles

Some examples of accelerators

Electromagnetic action on charged particles

The Lorentz Force $\vec{F} = q\vec{E} + \vec{v} \times \vec{B}$ Depends only on the magnitude & direction of the field -- perfect for acceleration Always perpendicular to particle's motion -- use for steering, not for

acceleration

Static Acceleration

Considering the huge particle energy required, this is impractical for all but the most simple accelerators. For more than 100's of keV, bad things happen...

Bad things...

Solution -- sinusoidal fields

$$
\vec{E}=\vec{E_{0}}\left(r,\theta,z\right)\cdot e^{i\omega t}
$$

 $\omega = 2\pi f$

- Vary the field rapidly
	- 10's of MHz or more
- The electrical breakdown doesn't have time to fully develop before the field reverses
- Time the beam to arrive when the field has the correct phase

Basics of RF Cavities

Some physics
\n
$$
\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}
$$
\n
$$
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
$$
\n
$$
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
$$
\n
$$
\vec{\nabla} \cdot \vec{B} = q
$$
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$
\nCylindrical metallic
\n
$$
\vec{\nabla} \cdot \vec{B} = 0
$$

A full derivation is well worth doing, but not today :)

Look at Jackson's book, "Classical Electrodynamics", page 356

Visualising the fields **Dipole solutions**

Superconductivity

A mathematical cavity model

Ohmic resistance

Perfect crystalline lattices should have zero resistivity

Quantum-mechanical wave functions can extend infinitely without disruption

But…

Lattice imperfections, thermal jitter, etc., disrupt the wave function

So, non-zero resistivity is a quantum mechanical phenomenon

Cooper pairs

Electrons (neg. charge) attract the lattice ions (pos. charge) as they move through the material.

Induces an apparent pos. charge excess, attracting other electrons

So -- electrons can be coupled

Cooper pairs

Pairing is due to an interaction between lattice vibrations and electron motion

Pairs electrons of equal **but opposite** momentum

That is, electrons moving in opposite directions

Imagine a sea of electrons constantly making and breaking Cooper bonds

Not so much a waltz -- more like a barn-dance

Cooper pairs

The Cooper bonds are very low energy

Easily disrupted by thermal energy

So superconductivity only appears at very low temperatures

Two-Fluid Model

View the SC material as consisting of a mix of two fluids: NC & SC

Fraction of SC fluid goes to zero above the critical temperature, *Tc*

Below *Tc*, the fraction of SC fluid rises to 100% at T=0K Important to note that this is just a mathematical \bar{m} and does not represent the actual physics inside*ttରe mate*riar

Predictions of the Two-Fluid Model

Below *Tc*, we have a mixture of superconducting Cooper pairs & normalconducting electrons

Apply a DC voltage

The SC pairs will conduct current without resistance, shorting out the finite-resistivity of the normal electrons

Thus, the entire mixture appears to be superconducting

Now apply a sinusoidally varying voltage

Inertia of the Cooper pairs causes them to slightly lag behind the voltage

So they don't instantly follow the field, and therefore don't perfectly short-out the field from the normal electrons

Therefore, normal current will also flow, dissipating power as usual

Predictions of the Two-Fluid Model

SC materials will have zero DC-resistivity below *Tc*

They will have very low, but non-zero, RF-resistivity

The RF resistivity will scale as follows:

Material purity

Super-pure material is better, isn't it?

As usual in physics, the answer is "*Yes. And no*"

Impurities decrease the mean-free path of the normal electrons

Gives them less time to "cause trouble"

Decreases the resistivity

But!

Eventually the mean free path will become comparable to the London penetration depth

The depth the field extends into the material

The equations then predict a turn-over in the resistivity

Material Purity

Type-I & Type-II SC materials

Theory predicts two types of SC material

Type-I: Expels magnetic fields from the body of the material when crossing *Tc*

Niobium (type-II) is used in accelerators

Any mag. flux present during cool-down will be trapped

Forms vortices that can scatter SC current

SC implications on cavity design

Machine parameters

SC helps accelerators due to the almost-zero power loss

Almost all power goes to the beam

Very high-Q0 of SC cavities may result in a long-filling time

The filling time "wasted power"

The RF source is on, but there is no beam

Reduce this in two ways:

Increased beam-pulse length -- reduces the fraction that the filling time accounts for

Increased beam current -- "loads" the cavity heavily, resulting in a reduced fill-time

But this may not satisfy user requirements In general it is advisable to adapt the machine parameters to the users' needs, and then choose the technology appropriately.

Low frequencies

State-of-the-art & active research

Electrical breakdown

High frequencies chosen to limit breakdown effects

But breakdowns still occur, in two forms:

Field emission

Electrons pulled from the cavity surface, and accelerated

Absorb the energy of the RF field

Decreasing the Q0

Destroying the efficiency of the acceleration

Damages downstream components

Multipactor

Emission & absorption of electrons in a self-amplifying avalanche

Absorbs the energy of the RF field

Field emission

Field emission in a single cavity

Field emission

Field emission in multiple cavities

Multipactor

Coupler multipactor

Multipactor

Closely related to the problem of field emission

Difference is the re-emission of particles from impact points

A re-emission ratio greater than 1 results in an avalanche

Re-emission depends on the RF phase at the time of impact

So the particles must arrive at the right time

This results in a resonance condition

So multipactor only happens for specific RF amplitudes

Leads to "multipactor bands"

Some typical real-world problems

