

EUROPEAN SPALLATION SOURCE

ESS cryomodules

Christine Darve (with input from CNRS-IPNO and CEA-IRFU)

ESS Engineering Lecture

Lund University February 12, 2016

Outline

- Cryomodule characteristics
- Cryomodule components
- Cryomodule assembly
- How to operate a cryomodule

Acknowledgements & references

→ Acknowledgement to P. Duthil and P. Bosland

ESS SRF Linac Collaborative Space:

http://ess-ics.atlassian.net/wiki/display/CRYOM/Cryomodules+Collaboration+space

- US-Particle Accelerator School, http://uspas.fnal.gov/materials/materials-table.shtml
- CERN Accelerator School, <u>http://cas.web.cern.ch/cas</u>
- JUAS, <u>https://espace.cern.ch/juas/SitePages/Home.aspx</u>

Few books

- RF Linear Accelerators, T.P. Wangler, Wiley, 2008
- RF Superconductivity for Accelerator, H. Padamsee, J. Knobloch, T. Hays, Wiley, 2011
- An introduction to particle accelerators, E.J.N. Wilson, Oxford Univ. Press, 2001
- An introduction to the physics of high-energy accelerators, D.A. Edwards & M.J. Syphers, Wiley, 1993

1/ To provide a cryogenic environment to the cold mass (cavity) = cryostat:

- distributing the cryofluids to cool-down and maintain at cold T° (LHe, LN₂)
- limiting the heat transfers

2/ To support the cavities and perform accurate alignment

- with respect to the beam axis
- with respect to other linac components (cryomodules, diagnostics, tunnel)
- NB: alignment must be preserved during thermal and pressure cycles

A cryomodule: what is it and what for?

3/ To offer magnetic shielding

- from the local magnetic sources
- from the earth magnetic shield

NB: the magnetic shield might be cooled (for better performances)

Cavities and Cryomodules

RF cavities housed in cryomodules, which keep the RF cavities working in a superconducting state, without losing energy to electrical resistance

ESS SRF cavities and cryomodules

EUROPEAN

SPALLATION SOURCE

ESS Linac Layout

ESS Linac Layout

$$Qo = \frac{EnergyStored}{PowerLoss}$$

ESS Requirements and RF Parameters

Spoke cavities

Elliptical cavities

EUROPEAN

SPALLATION

SOURCE

833

Frequency (MHz)	352,2		Medium	High	
Optimum beta	0,50	Geometrical beta	0.67	0.86	
Operating temperature (K)	2	2 Frequency (MHz)		704.42	
Nominal Accelerating gradient (MV/m)	9	Number of cells	6	5	
		Operating temperature (K)		2	
Lacc (β opt.x nb gaps x $\lambda/2$) (m)	0,639	Epk max (MV/m)	45	45	
Bpk (mT)	79 (max)	Nominal Accelerating gradient (MV/m)	16.7	19.9	
Epk (MV/m)	39 (max)	39 (max) O at nominal gradient	> 509		
Bpk/Eacc (mT/MV/m)		7 5 10 ⁵	7 6 10 ⁵		
Epk/Eacc	<4,38	lris diameter (mm)	94	120	
Beam tube diameter (mm)	50	Cell to cell coupling k (%)	1 22	1.8	
RF peak power (kW)	335	n $5n/6$ (or $4n/5$) mode sen (MHz)	0.54	1.0	
G (Ω)	130		0.54	1.2	
Max R/Q (W)	427	Epk/Eacc	2.36	2.2	
Qext	2,85 10 ⁵	Bpk/Eacc (mT/(MV/m))	4.79	4.3	
Q0 at nominal gradient	1,5 10 ⁹	Maximum. r/Q (W)	394	477	
		Optimum β	0.705	0.92	
		G (Ω)	196.63	241	
		RF peak power (kW)	11	100	

Outline

- Cryomodule characteristics
- Cryomodule components
- Cryomodule assembly
- How to operate a cryomodule

Diameter 1350 mm

Elliptical Cryomodule Components Design

The cryomodule design and calculation:

- Thermo-mechanical studies
- Magnetic studies (CST)
- Hydraulic studies
- Safety analysis to size all components
- Reliability analysis, FMEA

Figure 9: Magnetic field inside the shield for Hx = 23.5 A/m and Hy = 32 A/m.

Elliptical Cryomodule Components

EUROPEAN SPALLATION SOURCE

Elliptical Cryomodule

Figure 4.120: Helium vessel with hanging rod

Safety relief devices

- Identify: Hydraulic circuits volume and pressure fluid most credible incident
- Assess/calculate:

Pressure drop distribution Mass-flow to extract Diameter of the relief Type of device

Mitigate/design →

 $= \frac{Q}{L_V} \frac{\rho_{L-} \rho_V}{\rho_L}$

'n

SRF Cavities Development

Spoke cavity

Elliptical cavities

EUROPEAN SPALLATION

SRF Cavities Performances

- Accelerating gradient
- Peak Surface fields
- Power Dissipation
- Cavity Quality
- Shunt Impedance

Few limitations of performance:

- Thermal Breakdown, alias quench
- Field Emission: Electron induced by an electrostatic field
- Multipacting: electron avalanche

Limit power loss in the cavity wall:

- By using low-resistant material or superconductors
- By rounding the shape to optimize the field distribution
- Limit shape edge to prevent field emission
- Good vacuum to limit breakdown

EUROPEAN SPALLATION

SOURCE

Cavity gradients

Cavity gradient is directly related to cost -> tendency to push the gradients

o SNS experiences a huge gradient variability -> needs for margins & operational flexibility !!

✓Almost every SNS run, a few cavities have problems, resulting in lower E_{acc} or turn-off -> linac retuning

Achievable gradients are mainly limited by heating by electron activity at high duty factor (especially by induced collective limits)
Ex. CM13 individual limits; 19.5, 15, 17, 14.5 MV/m Ex. CM13 collective limits; 14.5, 15, 15, 10.5 MV/m

Cavity number

Cavities tuning

K_L reduction using compensation rings for medium and high-beta

RF/mechanical design

Lorentz detuning

$$K_{\rm L} = \Delta f / E_{\rm acc}^2$$

$$K_{L} = K_{L\infty} + \frac{\Delta f}{\Delta z} \frac{\overrightarrow{F_{\infty}} \cdot \overrightarrow{u_{z}} / E_{acc}^{2}}{K_{ext} + K_{cav}}$$

Cavities tuning: Lorentz De-tuning

ESS and long pulse: 2.86 ms

- Because of the enormous gradients in superconducting cavities,
 - the radiation pressure deforms the cavities
- We expect over 400 Hz of detuning in the ESS cavities
 - Unloaded cavity bandwidth = 0.07 Hz
 - Loaded cavity bandwidth = 1 kHz
- The mechanical time constant of the cavities is about 1 ms compared to the pulse length of 3 ms
 - Static pre-detuning as done in SNS will not be sufficient
 - Dynamic de-tuning compensation using piezoelectric tuners is a must!
 - Or else pay for the extra RF power required

Cold Tuning System

Spoke CTS

Stepper motor and planetary gearbox (1/100e) at cold and in vacuum

2 piezo stacks

&

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed Actuator used : Stepper motor

Fast tuner

Main purpose : Compensation of small frequency shifts with a high speed Actuator used : Piezoelectric actuators

Elliptical CTS

Type V ; 5-cell prototype +/- 3 mm range on cavity

The Spokes Cryomodule

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed

Actuator used : Stepper motor with planetary gearbox (1:50)

Fast tuner

Main purpose : Compensation of small frequency shifts with a high speed

Actuator used : Piezoelectric actuators (no load displacement : ~ 50 µm @ RT)

A ball screw system driven by a stepper motor acts on a double lever arm mechanism to provide a significantly reduced displacement of the cavity flange along the beam axis.

The Spokes Cryomodule CREAT

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed

Actuator used : Stepper motor with planetary gearbox (1:50)

Fast tuner

Main purpose : Compensation of small frequency shifts with a high speed

Actuator used : Piezoelectric actuators (no load displacement : ~ 50 µm @ RT)

LHe cavity tank (considered as immobile and non-deformable)

Cavity package

Fundamental Power Coupler

The Spoke cryomodule prototype

Other components (all are fabricated)

✓ Cold warm transitions

Thermal optimization
 Thermal optimization

✓ Gate valves

✓ Assembly tests

 Smaller/less parts inside the clean room

The Spoke cryomodule

Other components (all are fabricated)

 ✓ Supporting system : rods based solution

⇒ possibility of adjusting the alignment under vacuum and cryogenic working conditions

Inner rod Outer rod

Easier assembly (simpler tooling)
 Rod made of two parts for easier cryostating

✓ Optical monitoring system for

Support rods fabricated
 Support tested

The Spoke cryomodule prototype

Cryomodule thermal shield

The Spoke cryomodule prototype

Cavities magnetic shield

✓ Material: Cryophy[®]
 ✓ Actively cooled (better performances)

Magnetic shields fabricated
 Assembly test performed
 To be tested within the cryomodule

Magnetic shield

Elliptical Cryomodule

Elliptical (704 MHz) RF System Layout

- One cavity per klystron
- 4 klystrons per modulator
- 16 klystrons per tunnel penetration

EUROPEAN

SPALLA

Spoke linac (352 MHz) RF System Layout

26 Double Spoke cavities Power range 280-330 kW Combination of two tetrodes

> Other options: Solid State Amplifiers

Large power supply (330 kVA) to supply 8 stations (16 tetrodes)

Outline

- Cryomodule characteristics
- Cryomodule components
- Cryomodule assembly
- How to operate a cryomodule

Elliptical Cavity Preparation

High beta cavity fabrication (Zanon and RI)

Study of the tooling in progress @ CEA

Example of the tooling for the assembling of the coupler on the cavity in clean room

Vertical Electropolishing system@ CEA

High β Elliptical Cavity Activities in Clean Room

Elliptical Assembly Procedure

Design concept of the tooling: most of parts will be used for both types of elliptical cryomodules

Infrastructure in Saclay

The clean room inauguration → May 13th 2014 Possible IKC for the assembly by industry at Saclay (XFEL cryomodules assembly)

- Uses the current infrastructure at Saclay
- Benefits from the experience of the XFEL cryomodule assembly (ALSYOM)

Assembly process inside the clean room

The bôth for the cryomodule assembly is almost ready

Assembly process outside the clean room

Example of assembling procedures in preparation

See the example of the coupler preparation in clean room for the RF processing: training with real components of geometry close to the final one

Outline

- Cryomodule characteristics
- Cryomodule components
- Cryomodule assembly
- How to operate a cryomodule

Cryomodule Interfaces

- Disciplines: beam optics, RF, cryogenics, vacuum, electrical, cooling
- Test stands
- Control command (Control Box, PLC, LLRF, MPS, EPICS)
- Quality Assurance
- Data-logging
- ES&H
- Conventional Facility
- Survey
- Logistics (Transport, storage)

EUROPEAN SPALLATION

Cryogenic operating modes

RF power test stations at CEA Saclay

Tests station at Saclay

Parameters	ESS operation	ECCTD tests at		
		CEA		
Acc. gradient	16.7 and 19.9 MV/m			
Peak RF power	1.1 MW max	400 kW max		
RF pulse length	2.86 ms	3 ms		
RF pulse rate	14 Hz	16.7 Hz		
Cavity cooling	LHe at 2K			
Coupler cooling	SHe at 4.5 K &	GHe at about		
	3 bara	4.64 K & 1.2 bara		
Thermal shield	GHe at 50 K &	LN ₂ at 77 K		
temperature	19 bara			

Control integration

New Collaborations to Empower ? ess

Science institutions involved in the design & construction of ESS

Aarhus Universitv CEA Saclay, Paris **CNRS** Orsay, Paris ESS Bilbao INFN, Catania Lund University Uppsala University CERN, Geneva Cockcroft Institute, Daresbury **DESY**, Hamburg ESS Bilbao

Accelerator Science and Technology Centre, Daresbury and Oxford Bilbao Technical University of Lisbon Fermi National Laboratory, Chicago

Oslo, Univer ET, Halden Linköping University Aarhus University Risø, Roskilde

DTU, Copenhagen University of Copenhaden

Berlin CEA Saciay, Paris KIT, Karlsruhe

TU, München

CERN, Geneva 🔎

CNR, Rome

CRSA, Sardinia

John Adams Institute for Accelerator Science, London and Oxford

Laval University, Canada Maribor University, Slovenia National Centre for Nuclear Research, Poland **Oslo University Rostock University** Spallation Neutron Source, Oak Ridge Stockholm University **Techical University of Darmstadt** Nuclear Physics Institute Of The Ascr Czech Technical University, Prague **Aarhus University** Uppsala, University University Of Copenhagen University Of Southern Danmark Technical University Of Danmark - Dtu Institut Laue-Langevin - III Llb (Laboratoire Léon Brillouin) Helmholtz-Zentrum, Berlin ational CentHelmholtz-Zentrum, Geesthacht uclear Research, Poland Technical University, Munich Forschungszentrum, Jülich **Elettra-Sincrotrone Trieste** Università Di Perugia **Consiglio Nazionale Delle Ricerche Delft University Of Technology** Institute For Energy Technology, Ife Linköping University Mid Sweden University Epfl | École Polytechnique Fédérale De Lausanne Paul Scherrer Institute, Psi