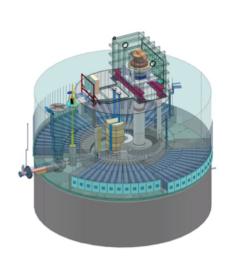
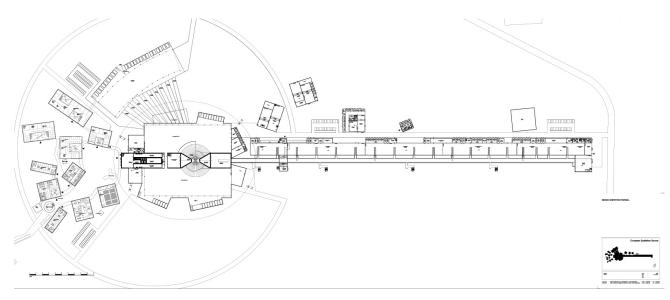


# Control System of the European Spallation Source

Timo Korhonen
Chief Engineer
Integrated Control System Division

#### Outline

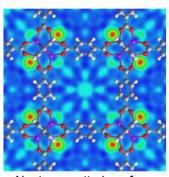




- Short recap of the ESS
- Functions of a control system
- Technologies
  - Hardware (Electronics)
  - Software
- System structures
- Summary



#### The European Spallation Source

- The European Spallation Source (ESS) consists of :
  - a pulsed accelerator that shoots protons into
  - a rotating metal (tungsten) target to produce neutrons
  - (up to ) 22 neutron instruments for various experiments






### EUROPEAN SPALLATION SOURCE

#### The European Spallation Source

- ESS is a neutron spallation source for neutron scattering measurements.
- Neutron scattering can reveal the molecular and magnetic structure and behavior of materials:
  - Structural biology and biotechnology, magnetism and superconductivity,
     chemical and engineering materials, nanotechnology, complex fluids, etc.



Neutron scattering of hydrogen in a metal organic framework



Neutron radiograph of a flower corsage



X-Ray Image

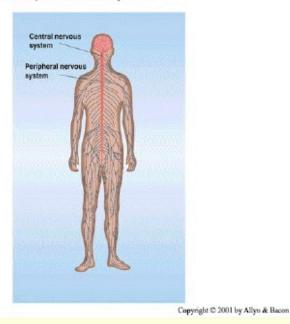


Neutron radiograph

## EUROPEAN SPALLATION SOURCE

#### The European Spallation Source

- The European Spallation Source (ESS) will house the most powerful proton linac ever built.
  - The average beam power will be 5 MW.
  - The peak beam power will be 125 MW
- At 5 MegaWatts, one beam pulse
  - has the same energy as a 7.2kg shot traveling at 1100 km/hour (Mach 0.93)
  - Has the same energy as a 1000 kg car traveling at 96 km/hour
  - Happens 14 x per second






#### The Integrated Control System (ICS)

### CENTRAL NERVOUS SYSTEM

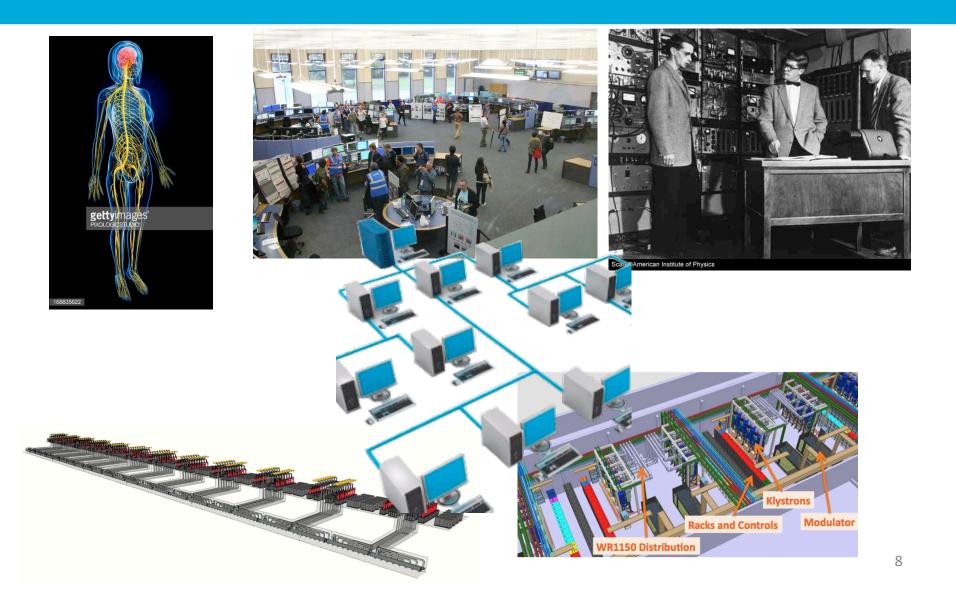
► Human Central and Peripheral Nervous Systems



#### **FUNCTIONS**

- Relays messages
- Processes information
- Analyzes information




#### Functions of the control system

- A good analogy: central nervous system of a human being
  - Connects components together
  - Collects and stores information
  - Sends commands to "actuators"
  - Some autonomous functions like in the brain: react to dangers
- Enables the operation of the facility
  - Thousands of devices, millions of control points





#### Can you see the similarities?





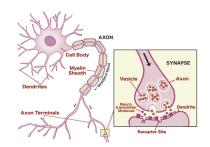




#### **Observation:**

Control System is Everywhere!




#### Requirements for the control system

- Enable operation of the whole ESS from a single control room
- High reliability: 95% for the whole ESS, 99.99 for ICS (exact numbers for ICS to be defined, high in any case)
- 24 hours, 7 days a week operation
- Long lifetime (accelerator planned lifetime 40 years)
  - Upgrades will happen in between
  - High maintainability
- Support (up to) 14 Hz operation of ESS
- Provide controls for the Accelerator, Target, Site infrastructure, Neutron Instruments (excl. data handling)

#### Control system Functions #1



- Connects components together
  - Distributed control system, connected over a computer network
    - (Ethernet)
  - Computers on the field are the neurons, with I/O cards as synapses











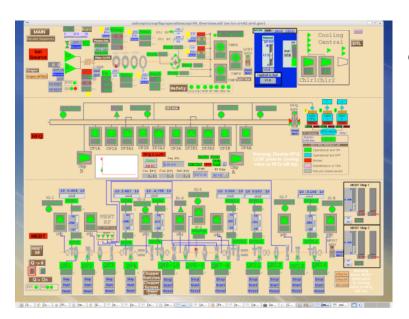


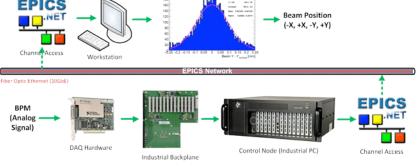


- Connects components together
  - A lot of things to connect!
    - Management of complexity
    - Ideally, one button in the control room: Switch beam on or off
    - Reality is not quite that simple
  - Each subsystem may (usually does) have its local control system







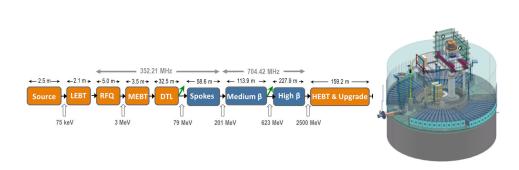


#### Control system Functions #2

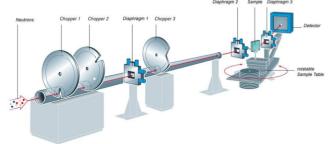
- Collect, display and store information
  - Device status & control displays in the control room
  - Store status data into archive to be analyzed later

How did the system perform last night? What happened on beam pulse #

102364?






### EUROPEAN SPALLATION SOURCE

#### Control system Functions #3

- Send commands to actuators
  - Switch on/off, set current, chop beam, etc.
- Synchronized 14 Hz operation
  - Start the beam
  - RF pulses have to be there when the beam comes
  - Monitors have to be triggered when the beam is there
- Timing system
  - Synchronizes actions
  - Distributes time for the whole facility













- React to dangers: Machine Protection
  - Remember: 5 MegaWatts of average beam power!
- Beam can damage accelerator components
  - Much faster than a human can react in microseconds!
- The accelerator has to be protected against itself
- Task of a Machine Protection System
- Consisting of
  - sensors to detect dangerous situations (beam loss)
  - Beam Interlock System
  - Actuators to stop the beam
- Fast logic in hardware (FPGA)
  - Autonomous, but close relation to equipment control
  - Configuration and operation via software
  - Rigorous development and testing







#### **Control System Technologies**

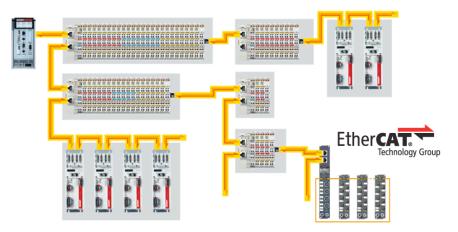
#### Hardware (Electronics)

- Industrial control electronics
  - PLCs: robust, reliable, well proven
- Real-time capable
  - React within one pulse (14 Hz, 71 milliseconds)
- Fast
  - Fast measurements and reactions (microseconds, nanoseconds)



#### Control System HW Technologies #1

### PLCs for distributed control (Programmable Logic Controller)


- Vacuum systems
  - pumps, gauges
- Cryogenics control
  - Cooling down helium to 2 Kelvin
  - Takes two weeks from room temperature to cool down a cryomodule for operation
    - Reliability is essential speed (as far as sufficient) secondary
- Building (aka Site Infrastructure, or Conventional Facilities)
  - Is an important part for operation of the facility
    - Cooling, electric power, etc.
- Target systems
  - Cooling, gas and liquid flows, etc.



## EUROPEAN SPALLATION SOURCE

#### Control System HW Technologies #2

- Event-synchronized real-time systems
  - Need to react within one pulse (14 Hz, 71 milliseconds)
  - Use the EtherCAT standard (https://www.ethercat.org)
    - Real-time capable Ethernet protocol
    - Widely used in industry
  - Use with an open-source driver on a regular computer







#### Control System HW Technologies #3

- Ultrafast systems (by today's standards)
  - Need to measure/react in nanoseconds
  - Implemented in direct logic (FPGA, Field Programmable Gate Array)
- Large amounts of data to handle
  - Analog-to-digital converters in 100 MSPS range
  - Sometimes needs to be stored for analysis
- Fastest industrial systems of today
  - Telecommunication : MTCA (Micro TeleCommunications Architecture)
  - Adapted for physics applications: MTCA.4





- Modular (multi)computer system
  - Plug-in modules (I/O, CPU)
  - Based on PCI Express (MTCA.4)
  - High data bandwidth
  - Multi-CPU systems
  - High-performance electronics,
     FPGA (Field Programmable Gate Array), fast I/O
  - Extensive platform management
- Rather expensive
  - Use only where justified by performance needs





## EUROPEAN SPALLATION SOURCE

### Control System (HW) Technologies #4

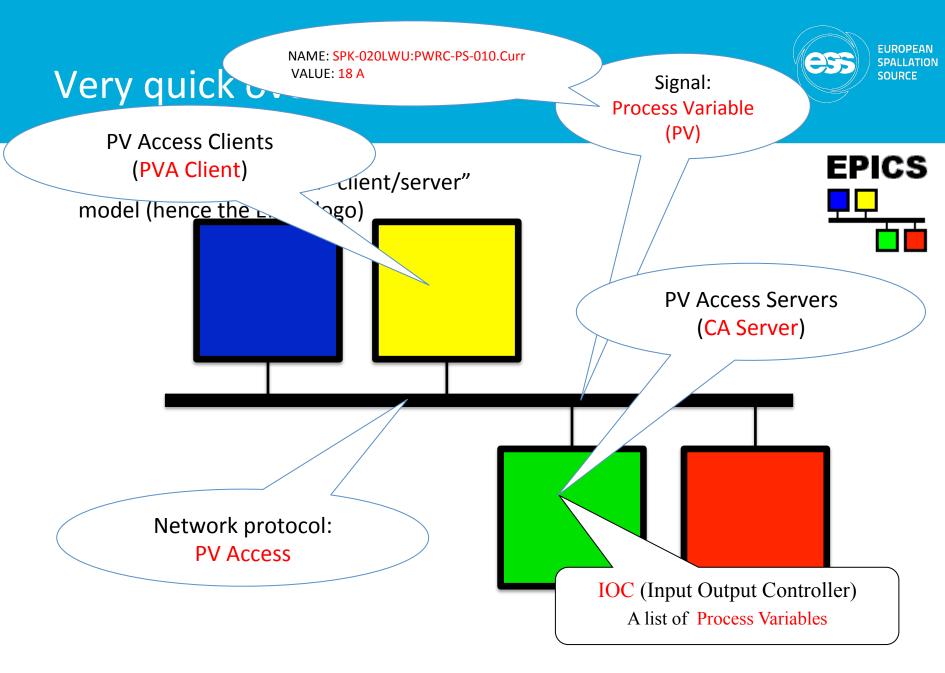
#### Networking

- Thousands of computing nodes in one network
  - SDN (Software Defined Networks)
- Potentially high traffic volumes
  - Archiving millions of process variables, detector data, images, etc.
- Flexibility required
  - Computers and controllers may come and go
  - Traffic may need segmentation (not all data interests everybody)
  - But some data may be needed by anybody/everybody

#### Servers and storage

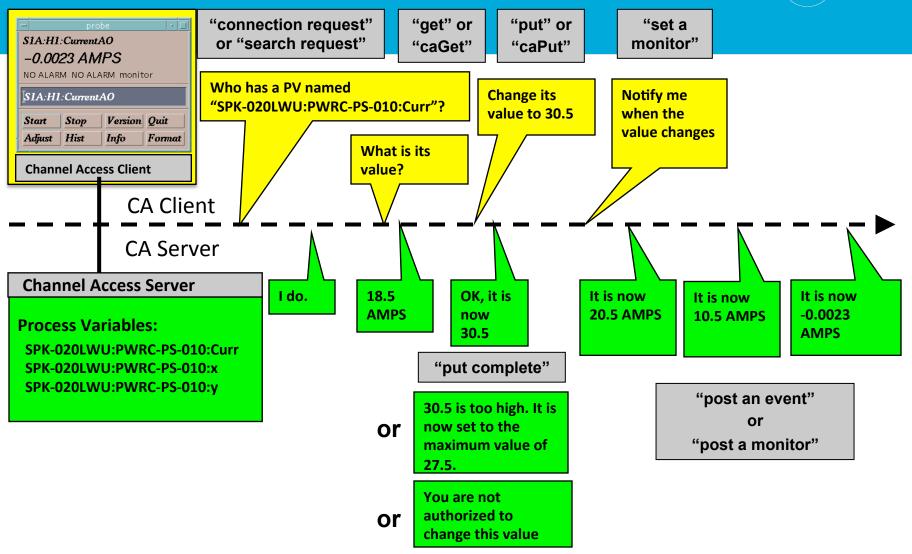
- Virtualization (reduce number of PC boxes)
  - High availability
- High-speed storage
  - Big volumes, data retention requirements











#### Software technologies

- Control System Toolbox: EPICS
  - Experimental Physics and Industrial Control System
  - One of a few software packages specialized for accelerator and experimental systems
    - Others: TANGO (ESRF, MaxIV, etc), DOOCS (DESY), FESA (CERN), etc.
  - Open source, collaborative effort
    - Not precisely known, but over 100 labs and installations use EPICS
      - From huge scientific installations to beer brewing (really!)
- EPICS allows us to connect to the signals in the field
  - Read, write, monitor over network
  - Scales from a few signals up to millions of signals
- Server-client model
  - Like a small-scale Internet of Things (Intranet of Things)



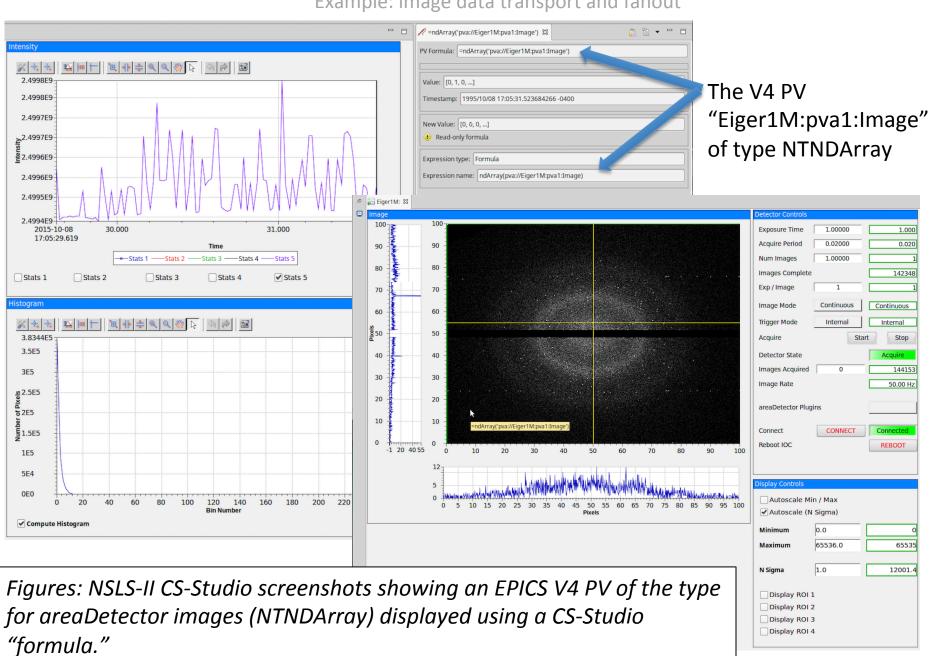
#### Connect to I/O via EPICS PV Access





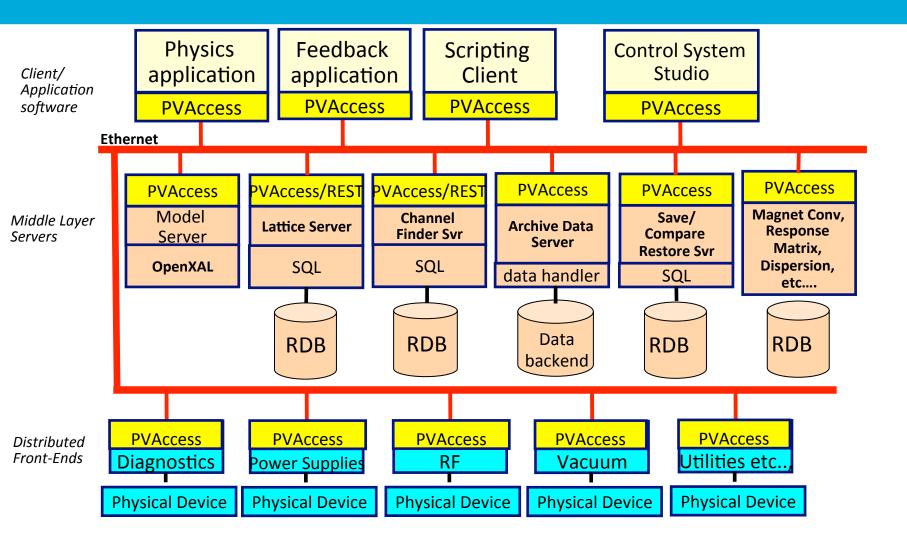
### **EPICS** Technologies




- Programming languages
  - C, C++ (most of the low-level layer, also client code)
  - Java (Client software, associated services)
  - Python is a popular scripting language, many others are supported
- Operating systems
  - EPICS runs on many operating systems
    - Linux, Windows, MacOS
    - Real-time operating systems (usually I/O layer only)
      - vxWorks, RTEMS, etc
- Platforms
  - From big to small
    - Raspberry PI to large server machines
    - On a toaster almost.
  - A lot of I/O devices supported
    - And (relatively) easy to write your own support.



#### Application and GUI/HMI development


- Several tools available from the community
  - GUI (graphical User Interface) builders
  - Tools for data archiving, alarm management, etc.
- ESS has selected the Control Systems Studio as a standard tool
  - Based on ECLIPSE (Java), plug-in architecture
    - · Can be configured to user's needs and extended
  - Several tools available as plug-ins:
    - GUI Builder (BOY), (Archive) Data Browser, Alarm Handler

#### Example: image data transport and fanout





#### Composition of the Control System





#### **Control System Applications**

- General-purpose services
  - Process variable archiving for analyzing what happened
    - Continuous or "post mortem"
  - Handling alarms
    - Notify operators or engineers if something is going wrong
- Sub-system controls
  - Starting up and tuning the RF (or magnet, vacuum, etc) systems for operation
- Accelerator Physics applications
  - Use control system facilities to steer and shape the beam
  - Optimize the beam quality and behaviour
- Operation Sequencer
  - Steer the accelerator (and target) from low power beam to full power in a controlled way
- Support applications
  - Properties of the equipment, status displays, operation logbook, error and event logging, etc.

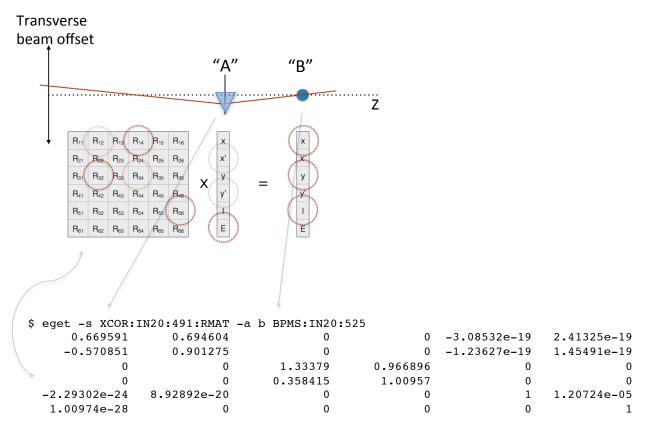
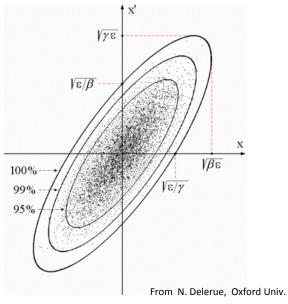




Figure: EPICS V4 modelling service giving orbit response matrices and Twiss parameters for given devices. These are the basis of 95% of emittance minimization applications – feedback, steering, bumps, etc



```
$ eget XCOR:LI24:900:TWISS
    energy 5.00512
    psix 37.7625
    alphax 13.6562
    betax -2.78671
    etax -0.00698294
    etaxp 0.00107115
    psiy 31.9488
    alphay 116.762
    betay 5.2592
    etay 0
    etayp 0
    z 2438.72
```

#### Summary



- Control system touches almost every aspect of the ESS facility – thus: Integrated Control System
- Enables the operation of the (very complex) facility as a single entity
- Technology spectrum is very wide
  - 9 orders of magnitude in timespan (nanoseconds to weeks)
  - Networking, servers, datacenter
  - FPGAs, Gigabytes/sec data handling to high reliability (and safety) systems
  - Software ranging from databases to accelerator physics, from GUIs to low-level kernel drivers
  - Hard- and firmware development





- Very high reliability and availability requirements
  - Datacenter level, 24/7 operation, 99.99xx availability
- Handling of millions of Process Variables
  - Offer different abstractions to different users
    - Subsystem engineer, accelerator physicist, neutron scientist, manager,...
    - Ease of use
  - Storage and manipulation of data
    - How to find and access the required data
- If you are interested in how a very complicated system works, controls is the place to be!