Engineering solutions on in-monolith optics, ESS

www.neutronguide.com

www.boron10coatings.com

S-DH

- 1. Past Performance
- 2. Metallic Substrate
- 3. Glass Substrates

Metallic Guide Aluminium

Metallic Guide Aluminium

We manufactured more than 10 meter inpileneutronguides with m=2 coatings

Metallic Guide Aluminium

The Neutron Reflectivity over 63 measurements of m=2 supermirrors : 92.8 %

2. Metallic Guide 2.2 Copper

File: Q_NRS_P1b

created: 18/03/05 FML last modified: 02/05/07 FML released: 02/05/07 HH

3. Glass Substrate

Glass Substrate	Density Change *(1) (2)	Lifedose *(2)	Lifedose *(2)
used for neutronguides	after sample penetration	with vacuum housing	with vacuum housing
	of about 1E18n/cm2	sample penetrating fluence	beam fluence
	%	n/cm2	n/cm2
Floatglas,			> 1.00 E+20
N-BK7, Schott	+1.3	> 1.50E+17	> 2.00E+18
S-BSL7, OHARA	+1.3	> 1.50E+17	> 2.00E+18
Borkron N, Schott	-1.0	2.77E+16	3.70E+17
N-ZK7, Schott	-1.0	2.77E+16	3.70E+17
A88-66, Corning	-0.8		
K8, LZOS			
Borofloat 33, Schott	-2.0	2.10F+15	2.80F+16
Pyrex	-2.0		
Duran (Borosilikatglas 3,3)			

Measurements of density change: (1) W. Kaiser (2) J. Beaucourt, R. Boffy, M. Kreuz, U. Köster, F.J. Bermejo; Why neutron guides may end up breaking down? Some results on the macroscopic behaviour of alkali-borosilicate glass support plates under neutron irradiation; Nuclear Instruments and Methods in Physics Research B

3. Glass Substrate

Following risc factors can reduce the lifetime of a glass neutron guide **up to two order of magnitude**:

1.) Self evacuated

- 2.) Stress because of weight
- 3.) Stress because of low or high temperature
- 4.) Stress because of mechanical load

Use Borofloat only after a Chopper or a Velocity Selector