

< ロ > < 同 > < 三 > < 三

Mechanical analysis for the Monolith Vessel

Consorcio ESS-BILBAO & Instituto de Fusión Nuclear

F. Sordo, L. Mena, I. Herranz, A. Aguilar M. Mancisidor, R. Vivanco, M. Magán , T. Mora J.M. Perlado, J.L. Martínez

March 15, 2016

Table of contents

Introduction

Planing and Schedule

Mechanical analysis

- Mechanical analysis: Vacuum
- Mechanical analysis: Over pressure 2 bar
- Mechanical analysis: Buckling

Manufacturing Analysis

Conclusions

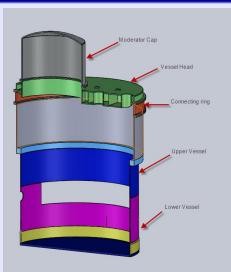
A (1) > A (2) > A

Introduction

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

ESS-BILBAO Consortium


Role and functions

- The Spanish Government has taken the decision that ESS-BILBAO will be the only contractor from Spain to ESS project.
- ESS-BILBAO has no independent research activities neither teaching responsabilities outside ESS project.
- Staff of 60 scientific & engineers and the possibility to hire extra staff.
- On January 2015, ESS-Bilbao was chosen as ESS partner for the Monolith Vessel.
- On September 2015, ESS-Bilbao and ESS-ERIC organized the KO meeting in Madrid.
- On November 2015, ESS-ERIC completed the PDR and ESS-Bilbao started the design phase.

(日) (同) (三) (三)

Introduction

Monolith Vessel components

ESS-BILBAO (ESS-BILBAO)

March 15, 2016 6 / 25

3

イロト イポト イヨト イヨ

Modifications based on the actual scenario

- We have divided the project in two sub projects with different schedule and SAT: "Lower & Medium Vessel" and "Head of the Vessel & Connection Rings".
- The information required for the design process for the "Lower & Medium Vessel" is mainly on place so the design is progressing on schedule.
- Regarding "Head of the Vessel & Connection Rings" additional clarifications about the number, size and position of the different penetrations have to be provided by the end of the month.
- A clear definition of the vacuum requirements is critical to continue the manufacturing review and the definition of the flanges and joints.

(日) (同) (日) (日) (日)

Schedule

ab 000d 15d i0d id id	QZ	Q3	Q4	2016 Q1	Q2	Q3	Q4	2017 Q1	Q2	Q3	Q4	2018 Q1	Q2	Q3	Q4
15d 10d 1d	Q2	Q3		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
15d 10d 1d															
15d 10d 1d												-			
id Id				-											
id Id															
Id					-										
ld															
			b												
			+												
:0d				_	- 1										
				i i		•									
bot					1		1								
ld				i i											
ld															
ld				1.1		Þ	_								
ld						Þ	_								
ld				- i		E									
							÷								
35d				- i			_								
id								1							
ld															
bol															
ld											E	1			
ld				- i								Ъ			
ld															
												÷			
	2d	bd 													

ESS-BILBAO (ESS-BILBAO)

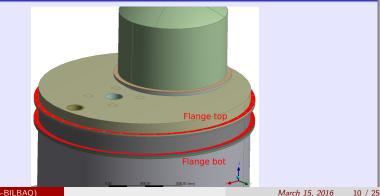
・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Schedule

Nombre					2016	2017 2018										
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Conection Ring & Head of the vessel & Covers	985d	_			-			-	-		-		-	-	-	
Carification of the requirements and penetrations	60d															
Design phase	370d								7							
MEC:Mecanical analysis of the vessel	140d				i i											
MEC: Sysmic analysis	60d															
MC: Damage and activation	90d				1.1	t		_								
Preparation of PCT: Support on manufacturing and transportation	20d					b										
PA: Support on manufacturing and transportation	60d				1											
MS: Design review									÷							
Final CAD modeling	210d				i i				-							
Final Mechanical and RCC-MRx	45d															
Final Neutronic analysis	45d				1.1											
Final Sysmic analisys	40d															
Final Quality specifications & manufacturing requirements	40d				1.1											
Final Transport analysis	40d															
CDR: Critical desing review for Monolith Vessel					i i					- ÷						
Manufacturing Phase	285d														٦	
Prepration PCT: Manufacturing covers and penetrations	45d															
Public advertising: Manufacturing covers and penetrations	60d															
MS: Contract award for covers and penetrations					1							÷				
Manufacturing covers and penetrations production	180d															
Transport to Lund	20d				1											
Installation	20d															
Site testing	20d															
MS: SAT by ESS																•

3

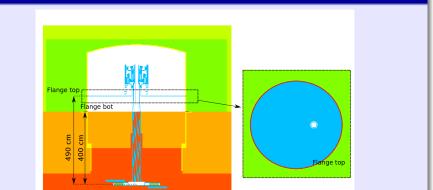
<ロ> (日) (日) (日) (日) (日)


3

(日)

Flanges and seals

The proposed solution for the joint between Connection ring, Head of the Vessel and Medium vessel is based on a bolted flange. An evaluation of the radiation level is need to clarify the type of seal (elastomer or metal). If a metallic seal is needed the radiation level can be consider negligible (<< 1E-3 dpa).


MCNPX model

Flanges and seals

The proposed solution for the joint between Connection ring, Head of the Vessel and Medium vessel is based on a bolted flange. An evaluation of the radiation level is need to clarify the type of seal (elastomer or metal). If a metallic seal is needed the radiation level can be consider negligible (<< 1E-3 dpa).

MCNPX model

March 15, 2016

10 / 25

Flanges and seals

The proposed solution for the joint between Connection ring, Head of the Vessel and Medium vessel is based on a bolted flange. An evaluation of the radiation level is need to clarify the type of seal (elastomer or metal). Considering 40 years of operation, the damage levels are in the range of standard vacuum elastomer (<800 Sv).

Dose rate for 5000 h of operation per year (neutrons & photons).

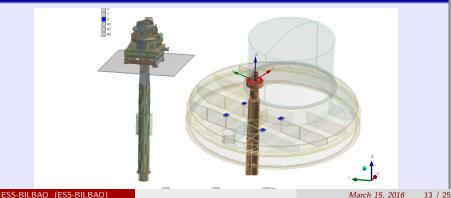
Element	Gy/year (Steel)	Sv/year	DPA/year
Top Flange	2.5	24.3	$6.2 \cdot 10^{-10}$
Bottom Flange	0.8	9.6	$1.8 \cdot 10^{-10}$

(日) (同) (日) (日) (日)

Mechanical analysis

ESS-BILBAO (ESS-BILBAO)

March 15, 2016 12 / 25

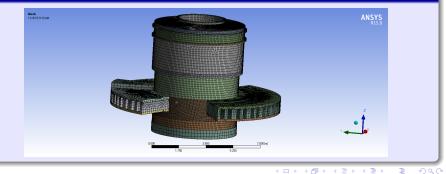

3

Mechanical analysis

Main loads and boundary conditions

A FEM model has been configured for the mechanical analysis. The Target has been considered as a shaft with point masses (mass and inertia for internal shielding and Target wheel) connected to the vessel by springs (1E9 $N \cdot m^{-1}$) and a joint connection. This simplifications keeps the main resonance modes for the shaft.

Geometrical model for the monolith vessel



Mechanical analysis

Main loads and boundary conditions

A FEM model has been configured for the mechanical analysis. The Target has been considered as a shaft with point masses (mass and inertia for internal shielding and Target wheel) connected to the vessel by springs (1E9 $N \cdot m^{-1}$) and a joint connection. This simplifications keeps the main resonance modes for the shaft.

Geometrical model for the monolith vessel

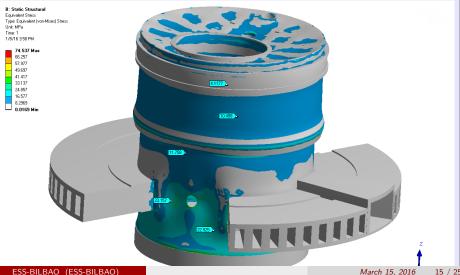
Material selection

Main loads and analysis

- Dead weight (Target and vessel)
- Vacuum (P-loads & buckling)
- 2.0 bars Over pressure (P- loads & bolted union analysis)
- Seismic analysis

Based on vacuum requirements two stainless steels could be considered

(日) (周) (三) (三)

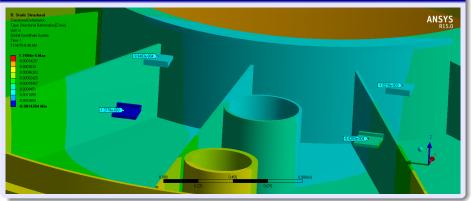

March 15, 2016

14 / 25

- SS-316L: Better corrosion resistance properties (Base line)
- SS-304: Better manufacturing and welding properties.

Mechanical analysis: Vacuum

Stress and deformations relative low compared with acceptable levels (\sim 20-30 MPa)

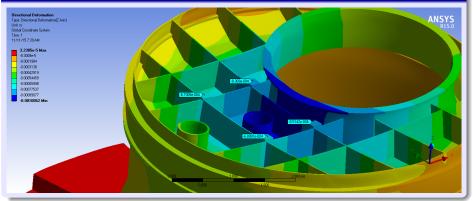

15 / 25

Mechanical analysis: Vacuum

New configuration for the vessel head stiffness

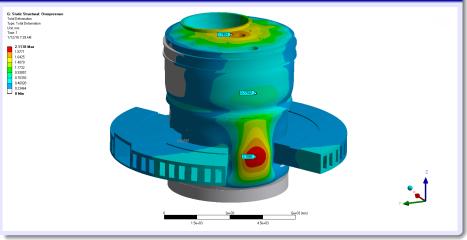
One of the most demanding design criteria is the requirement to minimize the vertical displacement of the target vessel supports. Also it is convenient to have an homogeneous displacement of the supports to keep the target balanced.

The displacement of the drive unit supports



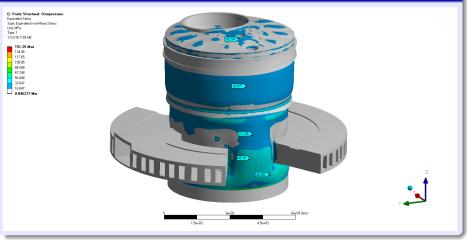
Mechanical analysis: Vacuum

New configuration for the vessel head stiffness


One of the most demanding design criteria is the requirement to minimize the vertical displacement of the target vessel supports. Also it is convenient to have an homogeneous displacement of the supports to keep the target balanced.

The displacement of the drive unit supports

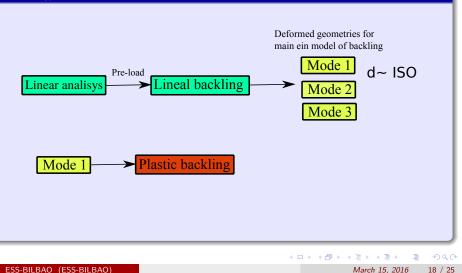
Nominal conditions: Over pressure 2 bar


The displacement of the drive unit supports

3

Nominal conditions: Over pressure 2 bar

The displacement of the drive unit supports



ESS-BILBAO (ESS-BILBAO)

3

Mechanical analysis: Buckling

Methodology based on RCC-MRx

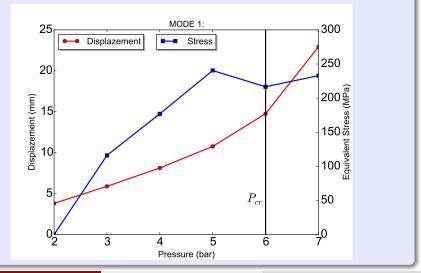
Mechanical analysis: Linear buckling

Linear backing "safety factors" for SS-316L

Mode	λ_c
1.	22.916
2.	24.221
3.	24.974
4.	25.995
5.	26.029
6.	26.141
7.	26.743
8.	26.75
9.	26.884
10.	26.896

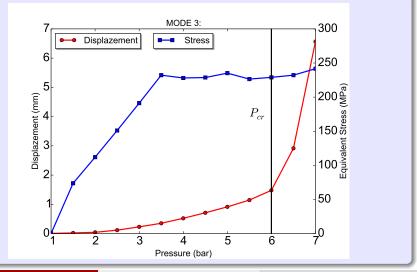
Linear buckling

The linear buckling analysis can produce a significant error and it is not covered for all materials at RCC-MRx. We have complete the analysis for the first 30 modes.

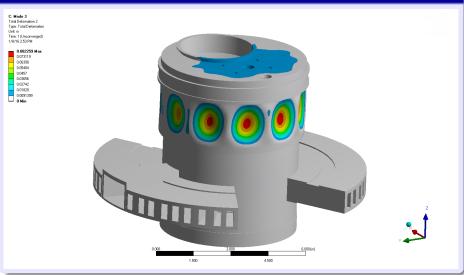

ESS-BILBAO (ESS-BILBAO)

3

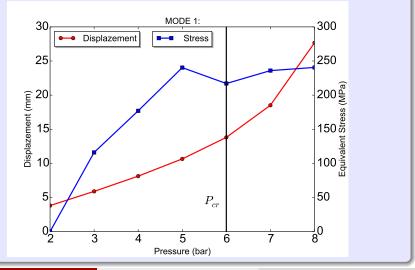
(日) (同) (日) (日) (日)


Mechanical analysis: Plastic Buckling for SS-304

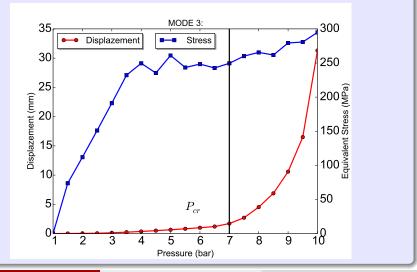
Modes 1 and 3


Mechanical analysis: Plastic Buckling for SS-304

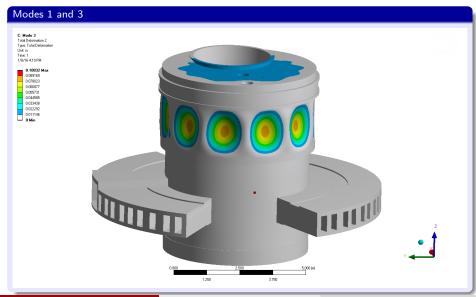
Modes 1 and 3


Mechanical analysis: Plastic Buckling for SS-304

Modes 1 and 3


Mechanical analysis: Plastic Buckling for SS-316L

Modes 1 and 3



Mechanical analysis: Plastic Buckling for SS-316L

Modes 1 and 3

Mechanical analysis: Plastic Buckling for SS-316L

Mechanical analysis: Conclusions

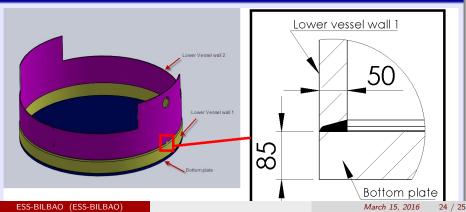
Remarks from mechanical analysis

- The Stress values are relatively far below the RCC-MRx limits so there is room for thicknesses optimization, specially on lower and medium vessel.
- The displacement in the Target supports can be limited to 2 mm
- Seismic analysis are on going.

(日) (同) (三) (三)

Review of manufacturing procedure

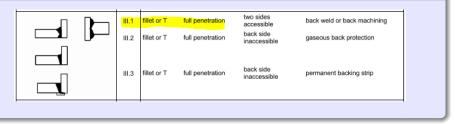
On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.



(日) (同) (三) (三)

Review of manufacturing procedure

On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.


Welding analysis

Review of manufacturing procedure

On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.

Welding analysis

(日) (周) (三) (三)

Review of manufacturing procedure

On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.

Welding analysis

Table RS 7720	a : class N2 _{Rx} shell- vesse 1 : examination of surface				Ideo	d (before weldin	g)	
		lust			X	Non		
Туре		erri		X		destructive	Criteria	
	Aluminiu		X			examination		
	Zirconium	X						
I. Butt welded joint	ROLLED FORGED							
(Types I.1, I.2, I.3)	(e ≥ 10 mm)			X	x	RES or MAG RES	RS 7363 RS 7363	
	$(e \ge 5 mm)$	x	х		 ^	RES	RS 7363	
	CAST			x		RES or MAG	RS 7363	
	(all thicknesses)		х	· · ·	X	RES	RS 7363	
Full penetration angle joint (Types III.1, III.2)	PART A							
	(e _A ≥ 10 mm)			x		RES or MAG	RS 7363	
	(e _A ≥ 5 mm)	x	x		×	RES RES	RS 7363 RS 7363	
e _B	PART B							
	all thicknesses			x		RES or MAG	RS 7363	
	un uneuresses		х		X	RES	RS 7363	
× ×								
	In addition $e_B \ge 10 \text{ mm}$			X	х	US (2)	Tome 2	
↑ B								
•								

Review of manufacturing procedure

On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.

Welding analysis

	2 : examination during we						
Туре	F	erri	eni tic		X	Non destructive	Criteria
	Aluminiu	ım	x			examination	
	Zirconium	X					
1. Butt welded joint	Backing run			Х		RES or	RS 7363
(Types I.1, I.2, I.3)	Each change of process					MAG (1)	
	. (RS 7722.11)				X	RES	RS 7363
3. Full penetration angle joint	Karaka DAD and HO and ha			~		050	DO 7704
(Types III.1, III.2)	If neither RAD nor US can be			Х		RES or	RS 7724. RS 7724.
e _A	performed on completed weld, examination of root pass and					MAG (1)	R5 //24
[∼] A▲► A	examination every 3 layers during		x		x	RES	RS 7724.
	filling up of the weld (RS 7723.1)		^		^	RED	K3 //24
e _B	nining up of the weld (KS //25.1)						
66							
70000000000							
111111111111111111111111111111111111111							
A							
В							
. –							

Review of manufacturing procedure

On December 2015, ESS-BILBAO awarded a contract to ENWESA to review the manufacturing process for the lower and medium vessel (manufacturing, testing, transportation and installation in Lund). The work should be completed in a in a couple of weeks.

Welding analysis

Table RS 772	0 a : class N2 _{Rx} shell- vesse 3 : examination after weld				,			
		Austenitic X						
Туре		Ferritic X					Criteria	
	Aluminiu		Х			examination		
	Zirconium							
1. Butt welded joint	All thicknesses :	Х	Х		Х	RES	RS 7724.1	
(Types I.1, I.2, I.3)	(outer face and inner face when			X	_	MAG	RS 7724.2	
	accessible)	Х	Х	X	X	RAD	RS 7724.3	
	Additional where e > 50mm			Х		US	RS 7724.4	
	Additional where e > 50mm	Х				US(*)	(*)	
	(*) as per provisions in RS 7721.2							
Full penetration angle joint								
(Types III.1, III.2)	All thicknesses	Х	Х		X	RES	RS 7724.1	
				X	-	MAG	RS 7724.2	
e _A			х	X	X	RAD (*)	RS 7724.3	
A								
e _B								
	(*) If RAD cannot be performed, carry out							
¥	a US examination (see RMC 2610 for austenitic steels)							
	If neither RAD nor US can be performed							
111111111111111111111111111111111111111	and more particularly for assemblies of							
A R	flanges and nozzles of internal diameter							
L 12	not exceeding 60 mm see examination							
	during weld operation.							

ESS-BILBAO (ESS-BILBAO)

March 15, 2016 24 / 25

Conclusions

Main remarks

- The on going activities for the monolith vessel are on schedule for Lower and Medium vessel
- Mechanical analysis shows room for optimization of thicknesses.
- The simplified model for the target has been accepted by ESS for seismic analysis.
- Manufacturing review on going without considering vacuum manufacturing procedures.

3

(日) (同) (日) (日) (日)