Remote Handling Best Practice

Target Technical Board Meeting Wednesday, 16 March 2016 Copenhagen

, UK Atomic Energy Authority

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

RACE Has Completed 30,000 hrs of Operations

- RACE has continually improved its remote handling expertise over at the European JET facility over 3 decades
- This experience has informed the design of components, tools, equipment and procedures
- Support international fusion development at JET, DEMO, JT6OSA and ITER.
- Involved nuclear fission and decommissioning

RACE has end to end experience of developing

- Procedure Development
- Extensive Operations
- Tool Design
 - Handling
 - Cutting
 - Welding
 - Inspection
- Design, supply and commissioning new equipment.

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

Size Reduction

- Overview
- Process in cells
- Outgoing waste
- Cutting options
- Contamination hazard
- Design for compatibility
- Summary

Size reduction – overview

- Components cut up before entering waste stream
 - To fit in waste storage containers
 - To segregate materials
- Difficult, hazardous
- Component design compatibility is critical
- Cutting tool development is "work in progress"
- Cutting compatibility best practice guidelines TBC
- Early engagement is key...

Size reduction – process

- Entry > size reduction > basket filling > storage > decay > transport
- Transport containers:
 - Ext. dose limit(s)
 - Activity limit
 - Segregation...

Size reduction - components

- Target Wheel
- Target Wheel Monitoring Plug
- Moderator Reflector Plug
- Proton Beam Window
- Proton Beam Instrumentation Plug
- Neutron Guides
- Neutron Guides blind plugs
- Light shutters

Concept design: saw and end-mill on articulated boom

- Concerns:
 - Force reaction/deflection
 - Vibration
 - Limited depth of cut
- Ongoing feasibility assessment
- Investigating alternatives...

- Two tool types needed:
 - Heavy duty
 - e.g. cutting through shafts, TW shroud
 - Deep cuts, precision not top priority
 - Precision cutting
 - e.g. releasing seal welds, cutting windows & cover plates
 - Smaller, shallower cuts, but precision is critical

- Heavy duty tool:
 - Circular saw on articulated arm
 - Band saw
 - Wire rope saw
 - Power hacksaw
 - (5kW laser)

3155

- Precision cutting tool
 - End mill on articulated arm (with/without saw option)
 - Movable table with end mill / slitting saw
 - Low power laser on robotic arm

- Selection process in progress
 - Catalogue of identified cuts needed
 - For cutting tool requirements specification
 - Contamination assessment*
 - Generation, spread, particle size, other hazards...
 - Technology Readiness Level assessment
 - Need low-risk, well-proven technology...
- Chosen tool(s) and capabilities will have an impact on component compatibility requirements
- Tool-specific requirements TBC

JUK Atomic Energy Authority

*Contamination hazard

- Plan for manned access to Process Cell
 - Infrequent/unscheduled maintenance, decommissioning
- Extremely high activity components arriving
- Even very small quantities of dust/chips could be fatal in airways/bloodstream
- Need to assess contamination spread and hazard
- Primary containment structure may be needed
- Impact on tool development and components

Design for compatibility

- Cells physical constraints:
 - Entry via floor valves: D_{max} 2,8m < 2,9m</p>
 - Power manipulator reach: H_{max} 6,3m
- Avoid welds where possible
 - Bolted connections & mechanical seals preferred
 - Low processing risk, possibility of recovery/reuse

Design for compatibility

- Cut locations:
 - Agreed in advance
 - Compliant with waste constraints
 - Max size: 3m x 2m x 1m (approx!)
 - Cut as little material as possible
 - Physical grooves/guides for tooling
 - TBC: clamping features

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

Well designed location features facilitate maintenance

- Kinematic Design
- Avoid Jamming
- Vertical loading

Wedging is Problematic to deal with remotely

- Wedging occurs when forces between the two assembled parts are internally balanced
- A wedging condition is difficult to recover.
- Location features should be designed to suit.

Well designed location features allow precise alignment & avoid jamming.

Step	DoF's	Translation	Rotation	
1. Component held in free space	6	3	3	

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

Design of Fasteners Can Prevent cross threading

UK Atomic Energy Authority

Bolt Heads Can be designed to reduce rounding risk

- Bi-Hex heads are recommended for high torque applications
 - Better socket engagement.
 - Lead-ins guide the tools.
- Standard bolt heads to ISO 4762:2004
 - Surface finish better than 1.6Ra
 - Conical base allows key to fully loaded
 - Pilot hole helps recovery
- 👯 UK Atomic Energy Authority

D

G x 45°

B (A/F Hex)

Torque reaction features need to located locally to fastening

- Manipulator cannot react high torques
- Torque Reaction mating features need to be incorporated into components

Captivated bolts assist remote handling

- Captivation improves
 efficiencey
- Captivation prevents bolts falling into undesirable inaccessible areas
- "Pop-Up" bolts help with remote handling

Galling is likely in Target Station.

- Factors increasing material migration & bonding.
 - High pressure
 - High torque
 - High Temperatures
 - Vacuum
 - Proton and Neutron Flux
- Release Torques up to 3 x tightening
- Mitigating Factors
 - Dissimilar materials
 - Cleanliness
 - Vacuum backing

• Prepare for recovery

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

Handling components – Gripper

- Manipulators typically interface with environment with a gripper
- Features:

Securing hole: Accommodates a pin feature on gripped item so the item cannot be knocked out of grip

- Tungsten carbide coating: High friction surface for picking up unexpected items (e.g. broken bolt)
- **Locating face:** Positions the fingers at a known depth from item to be gripped
- Angled gripping faces: Primary contact surface – smooth to not scratch the item and angled to aid alignment of grips

Grip Block

- Custom designed generic gripping interface for handling tools – becomes a standard RH part
- Features:

Angled edges: Aid alignment of grip fingers

Locating end block: Touch gripper locating face onto end block and fingers will be positoned correctly. Holes can act as temporary tool storage position.

- **Securing pin:** Fits into securing hole in gripper fingers
- Angled gripping faces: Primary contact surface

Grip block features

Grip block interface can be machined directly into tools

Bolting

- Provide a tapped hole on component and attach a handling tool using one or more bolts
 - Dowels and alignment features included to align bolts over holes
 - Pop-up bolts lift bolts out of bolt holes meaning tool removal is easy

Bolting examples

• Alignment features:

UK Atomic Energy Authority

Bolting examples

Twist Locks

• Tabs or flats on a rotating shaft that lock into/ onto corresponding flats on the component

Twist Locks Examples

, UK Atomic Energy Authority

Twist Locks Are recommended for lifting features

UK Atomic Energy Authority

Clamping

- Clamping involves two jaws one fixed and one moving
- Movement is controlled in both directions by a mechanism – typically rotating a bolt in either direction
 - Spring-return mechanisms can become stuck in the closed position
- Tabs on the jaws often included to secure component at the back usually when using low clamping forces for a delicate component

K. UK Atomic Energy Authority

Clamping Examples

UK Atomic Energy Authority

Clamping Examples

UK Atomic Energy Authority

Adapted Fingers

- Customisable add-ons to the grippers
- Can be configured for many different geometries
- Used for handling lots of the same components over and over

Tool Changer

- Pneumatic remote docking interface
- Includes a six-axis force moment sensor
- Used for handling bigger components

Tool Changer Examples

UK Atomic Energy Authority

Design Guides for Remote Handling

- Who is RACE
- Design Considerations for Maintenance Activities
 - Size Reduction
 - Locating Features
 - Fastening Features
 - Handling Mechanisms
 - Risks for Handling
- Future Engagement

Risks to be avoided

- No possibility for any items (e.g. internal pipes) to come loose from the final individual element or remaining structure during any processing step.
- Any brittle materials to be fully enclosed in a protective ductile container.
- Components will be "dry" of any fluid systems as far as reasonably practical.
- No flammable, volatile or explosive materials anywhere within the component.

We would like to engage with you to develop your designs in collaboration

UK Atomic Energy Authority