Aspects relevant to background reduction: an alternative view

Kalliopi Kanaki European Spallation Source

Contents

- Personal introduction
- Physics processes relevant to shielding applications
- Electromagnetic and hadronic calorimeters
- Simulation tools (GEANT)
- Possible applications in background reduction

Personal introduction

Experience mostly within high energy nuclear physics (heavy-ion physics with HADES@GSI, ALICE@CERN)

- PhD in strange particle production (C+C @ 2 AGeV)
- scintillators and gaseous detectors (drift chambers, TPC)
 - construction and commissioning
 - raw data analysis
- software implementation
 - development of diagnostic tools for online TPC monitoring
 - quality assessment for particle track reconstruction (online-offline comparison)
 - online TPC calibration algorithms
 - online physics algorithms

Electromagnetic vs. hadronic showers

slender shape

- irregular shape due to large p_t particles
- axially symmetric around the primary direction contain EM showers

Useful quantities

- material dependent, f(A, Z)
- mean distance over which a high-energy electron loses all but 1/e of its energy via bremsstrahlung ir

or

• 7/9 of the mean free path for pair production

shower depth $X = X_0 \ln(E_0/E_c)/\ln 2$

Molière radius: transverse scale of the EM shower

• $f(X_0, Z)$

interaction length λ

- material, particle and energy dependent
- mean distance travelled by a hadron before undergoing an inelastic nuclear interaction
- inverse of macroscopic cross section

Hadronic calorimeter@CMS

The ALICE detector at CERN

ALICE calorimeter characteristics

EMCAL

PHOS

Density	8.28 g/cm^3
Radiation length	0.89 cm
Interaction length	19.5 cm
Molière radius	2.0 cm
Melting point	1123°C
Hardness	4 Moh
Refractive index along	
ζ axis ($\lambda = 632 \text{ nm}$)	2.16
Hygroscopicity	none
Chemical activity	inert

Quantity	Value
Tower Size (at η =0)	\sim 6.0 × \sim 6.0 × 24.6 cm (active)
Tower Size	$\Delta\phi \times \Delta\eta = 0.0143 \times 0.0143$
Sampling Ratio	1.44 mm Pb / 1.76 mm Scintillator
Number of Layers	77
Effective Radiation Length X_o	12.3 mm
Effective Moliere Radius R_M	3.20 cm
Effective Density	5.68 g/cm^2
Sampling Fraction	10.5
Number of Radiation Lengths	20.1
Number of Towers	12,288
Number of Modules	3072
Number of Super Modules	10 full size, 2 one-third size
Weight of Super Module	~7.7 metric tons (full size)
Total Coverage	$\Delta \phi = 107^{o}, -0.7 < \eta < 0.7$

Simulation tools: GEANT

- toolkit for the simulation of the passage of particles through matter
- high energy physics, nuclear physics, accelerator physics, medical physics, space science, DNA response to radiation
- includes EM, hadronic interactions, particle decays
- open source, available to everyone

GEANT application examples

ALICE events: simulated and real data

first Pb-Pb event in November 2010

Possible contributions to an SNS-ESS collaboration

- Particle physics experience
- Development of simulation framework for the neutron community, open to everybody for use (official release in March)
- Proposal to combine passive and active shielding
 - add a monitoring aspect within a detector
 - work with the background, detect it and reject it
 - use of algorithms to distinguish S from B
 - both at hardware and software level
 - available experience with these commonly used techniques in HEP

An active cosmic radiation detector/ shield for ALICE

- ACORDE detector detects cosmic rays going through the rest of the subsystems
- a simple tracking algorithm reconstructs these tracks
- rejection or used for the TPC calibration
- "veto" and trigger concepts