PAUL SCHERRER INSTITUT

S

WIR SCHAFFEN WISSEN - HEUTE FUR MORGEN

AL

III}“‘"?

Michele Brambilla :: Scientific Software Developer :: Paul Scherrer Institut

Experiences with OMQ

BrightnESS meeting, Lund

Spe What OMQ is

Message library primary mean to scale that acts as concurrency framework
From the point of view off networking:
 broker free
e various transport process: in-process, inter-process, TCP, multicast
e N-to-N connections
« different socket pattern: pub-sub, request-reply,...

» asynchronous 1/0

From the point of view of programming:

« many languages supported: C, C++, C#, Python, Java, Tcl (Clojure, Delphi,
Erlang, Go, Haskell, Lisp, Obj-C, PHP, Ruby,...)

e Open source
« fast to learn, fast to use

» huge online documentation

Roa OMQ features

» Messages are blobs of 0 to N bytes

» No difference between text (attention!) and raw data

» Messages can consist of multiple parts

» Message queues at sender and receiver

« One socket can connect to many socket: receiver can filter messages
o Automatic TCP reconnect (I will discuss with SINQhm)

» Zero copy for large messages (increase performances)

import zmg import zmg

context = zmg.Context () context = zmqg.Context ()

socket = context.socket (zmqg.PUB) socket = context.socket (zmqg.SUB)
socket.bind("tcp://*:5557") socket.connect("tcp://127.0.0.1:5557")
msg = “Hello” msg = socket.recv ()

socket. send (msg)

Roa OMQ features

» Messages are blobs of 0 to N bytes

» No difference between text (attention!) and raw data

» Messages can consist of multiple parts

» Message queues at sender and receiver

« One socket can connect to many socket: receiver can filter messages

o Automatic TCP reconnect (I will discuss with SINQhm)

» Zero copy for large messages (increase performances)

socket. send (msg, £1ag=NOBLOCK)
socket.recv (msg, £1ag=NOBLOCK)

socket. send (msg0, £1ag=SNDMORE)
socket.send (msgl)

while more:
msg.append (socket.recv())
more = socket.getsockopt (zmg.RCVMORE)

socket.setsockopt (zmg. HWM,)

topicfilter = "10001"
socket.setsockopt (zmqg. SUBSCRIBE, topicfilter)

socket.setsockopt (zmg.RCVTIMEO, timeout)

socket. send (msg, copy=False)
socket.recv (msg,copy=False)

PAUL SCHERRER INSTITUT

= Basic message patterns

(]

@MQ provides sockets which enables advantage of message patterns
o PAIR

« PUSH - PULL
e REQ - REP
- PUB - SUB

Each pattern defines constrain on the network topology

Failures

« Server dies
« With many connect/disconnect applications can leak memory and get slower
e Is network silence “good” or “bad”?

« If TCP connection stays silent for a while, network can disconnect

Techniques for reliability

— ———————

e PUSH-PULL

 Distribute messages between multiple workers in a pipeline

e One directional connection

e Round-robin distributor

-[s P
Pemiaan]
ek colcnr
|
[aC Y ' ML L L
{ nu e

e Producer and collector stable part of architecture, consumers dynamic part

Possible issues
« If one consumer connects faster will receive more messages
« Large tasks requiring time to complete can cause unbalance

e If a consumer dies (while working) producer doesn’t know

null}u_mE"””“‘ PU B'SU B

« Addresses the “group messaging” problem
» Aimed for scalability: large volumes data sent rapidly to many recipients

» One-directional communications: no possibility to coordinate senders and

receivers

“Cenaro 2l Sanirw 22

e Messages are distributed without the knowledge of what or if any subscriber
exist: a publisher with no connected subscribers drops the packages

o Filtering happens at the subscriber side

Possible issues
 Subs join late or drop off: messages are lost
» Subs slow fetching messages: queues overflow, pubs crash

» Network become overloaded and drop data

i REQ-REP

« Distribute messages between multiple workers

e Client-server model

» Synchronous request-reply dialog

zmg chent 2mq servers

Reguest #1 [

REQ REP
Reply #1 =

Load balanced
ACross servers

Reguest #2

REP
Reply #2

.

Possible issues
« Server dies: client hangs forever

» Network loses request or reply: client hangs forever

PAUL SCHERRER INSTITUT
| —_— —

« 1-to-1 bidirectional connection
» No specific state stored within socket

 Sever listen (bind) on a certain port and client connects to it

Client Server

PAIR { PAIR

Multithreading & multiprocessing

» Desigh as message-driven application
« No need of locks and semaphores

e Transport: inproc:// , tcp://

pAuL[;_H_ERREN”””T OMQ deViCeS

If both ends are dynamic it is not a good idea to provide well known ports.
@MQ provides forwarding devices that became the stable point other components connect

to

moving part stable pan moving part

cliem server

port port

cliem Zmq Device server

cliem —

server

» QUEUE: forwarding device for request/reply communications
« FORWARDER: forwarding device for pub/sub communications

« STREAMER: streamer device for pipelined parallel communications

10

PAUL SCHERRER INSTITUT

(= Conclusion

@MQ provides a communication library with turns out to be fast and reliable:

« the main communication patterns are already defined

» “devices” are in principle not required but can be useful, depending on the network
structure.

» can handle different communication protocols and languages

e interoperable within different languages

Yes, it has some drawbacks:

« it provides only the communication layer, we have to build everything else on our
own

» doesn’t provide serialisation

 requires developers take care of possible failures

11

PAUL SCHERRER INSTITUT

(= Setup and results

» We are exploring different streaming solutions OMQ, EPICS and shared memory
» Original data can be multiplied in order to reach ESS-like throughput
« OMQ and EPICS: behaviour increasing message size / # clients

0MQ throughput 0MQ multiple clients
2000 2500
° —
— @
3 1500 = 2000
s >
= ° = 1500
< 1000]
3 <, 1000
e 500 ¢ g
8 £ 500
=
0 0
0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6 7 8
Message size [MB] # clients
® FOCUS AMOR RITA2 single cumulative
0OMQ vs EPICS
700.0
[]
7 600.0
< 5000
= 400.0
3 °
23000
oo
3 2000
<=
= 100.0
00 —
0 5 10 15 20 25
multiplier

®omQ ®EPICS

