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Spe What OMQ is

Message library primary mean to scale that acts as concurrency framework
From the point of view off networking:
 broker free
e various transport process: in-process, inter-process, TCP, multicast
e N-to-N connections
« different socket pattern: pub-sub, request-reply,...

» asynchronous 1/0

From the point of view of programming:

« many languages supported: C, C++, C#, Python, Java, Tcl (Clojure, Delphi,
Erlang, Go, Haskell, Lisp, Obj-C, PHP, Ruby,...)

e Open source
« fast to learn, fast to use

» huge online documentation



Roa OMQ features

» Messages are blobs of 0 to N bytes

» No difference between text (attention!) and raw data

» Messages can consist of multiple parts

» Message queues at sender and receiver

« One socket can connect to many socket: receiver can filter messages
o Automatic TCP reconnect (I will discuss with SINQhm)

» Zero copy for large messages (increase performances)

import zmg import zmg

context = zmg.Context () context = zmqg.Context ()

socket = context.socket (zmqg.PUB) socket = context.socket (zmqg.SUB)
socket.bind("tcp://*:5557") socket.connect("tcp://127.0.0.1:5557")
msg = “Hello” msg = socket.recv ()

socket. send (msg)
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» Message queues at sender and receiver
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socket. send (msg, £1ag=NOBLOCK)
socket.recv (msg, £1ag=NOBLOCK)

socket. send (msg0, £1ag=SNDMORE)
socket.send (msgl)

while more:
msg.append (socket.recv())
more = socket.getsockopt (zmg.RCVMORE)

socket.setsockopt (zmg. HWM, )

topicfilter = "10001"
socket.setsockopt (zmqg. SUBSCRIBE, topicfilter)

socket.setsockopt (zmg.RCVTIMEO, timeout)

socket. send (msg, copy=False)
socket.recv (msg,copy=False)
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= Basic message patterns
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@MQ provides sockets which enables advantage of message patterns
o PAIR

« PUSH - PULL
e REQ - REP
- PUB - SUB

Each pattern defines constrain on the network topology

Failures

« Server dies
« With many connect/disconnect applications can leak memory and get slower
e Is network silence “good” or “bad”?

« If TCP connection stays silent for a while, network can disconnect

Techniques for reliability

— ———————



e PUSH-PULL

 Distribute messages between multiple workers in a pipeline

e One directional connection

e Round-robin distributor
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e Producer and collector stable part of architecture, consumers dynamic part

Possible issues
« If one consumer connects faster will receive more messages
« Large tasks requiring time to complete can cause unbalance

e If a consumer dies (while working) producer doesn’t know
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« Addresses the “group messaging” problem
» Aimed for scalability: large volumes data sent rapidly to many recipients

» One-directional communications: no possibility to coordinate senders and

receivers
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e Messages are distributed without the knowledge of what or if any subscriber
exist: a publisher with no connected subscribers drops the packages

o Filtering happens at the subscriber side

Possible issues
 Subs join late or drop off: messages are lost
» Subs slow fetching messages: queues overflow, pubs crash

» Network become overloaded and drop data



i REQ-REP

« Distribute messages between multiple workers

e Client-server model

» Synchronous request-reply dialog

zmg chent 2mq servers

Reguest #1 [

REQ REP
Reply #1 =

Load balanced
ACross servers

Reguest #2

REP
Reply #2

.

Possible issues
« Server dies: client hangs forever

» Network loses request or reply: client hangs forever
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« 1-to-1 bidirectional connection
» No specific state stored within socket

 Sever listen (bind) on a certain port and client connects to it

Client Server

PAIR { PAIR

Multithreading & multiprocessing

» Desigh as message-driven application
« No need of locks and semaphores

e Transport: inproc:// , tcp://
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If both ends are dynamic it is not a good idea to provide well known ports.
@MQ provides forwarding devices that became the stable point other components connect

to

moving part stable pan moving part

cliem server

port port

cliem Zmq Device server

cliem —

server

» QUEUE: forwarding device for request/reply communications
« FORWARDER: forwarding device for pub/sub communications

« STREAMER: streamer device for pipelined parallel communications
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(= Conclusion

@MQ provides a communication library with turns out to be fast and reliable:

« the main communication patterns are already defined

» “devices” are in principle not required but can be useful, depending on the network
structure.

» can handle different communication protocols and languages

e interoperable within different languages

Yes, it has some drawbacks:

« it provides only the communication layer, we have to build everything else on our
own

» doesn’t provide serialisation

 requires developers take care of possible failures
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(= Setup and results

» We are exploring different streaming solutions OMQ, EPICS and shared memory
» Original data can be multiplied in order to reach ESS-like throughput
« OMQ and EPICS: behaviour increasing message size / # clients

0MQ throughput 0MQ multiple clients
2000 2500
° —
— @
3 1500 = 2000
s >
= ° = 1500
< 1000 ]
3 <, 1000
e 500 ¢ g
8 £ 500
=
0 0
0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 6 7 8
Message size [MB] # clients
® FOCUS AMOR RITA2 single cumulative
0OMQ vs EPICS
700.0
[ ]
7 600.0
< 5000
= 400.0
3 °
23000
oo
3 2000
<=
= 100.0
00 —
0 5 10 15 20 25
multiplier

®omQ ®EPICS



