

- What Challenges does ESS present for
 - Data Reduction and visualisation
 - Experiment control
- What is Instrument data delivering
 - Core frameworks that fit into ESS architecture
 - Specific technique and instrument customisations
- What relevance our scope has to commissioning.

Data rate challenge

The detector rate challenge presents the same challenge to DMSC

Integrated controls and Timing

• ICS deliver key services to Machine and Science

EUROPEAN

Data reduction

- Data reduction is
 - Transforming the data from the instrument coordinate system to the science coordinate system.
 - Correcting the data for instrumental and source artefacts
 - Correcting the data for absorption and multiple scattering

Data reduction

- Convert T.O.F to energy, wavelength, momentum transfer, d-space.
- Precise knowledge of flight paths
- Precise knowledge of scattering angle
- Geometry is essential

Data rate

- Event rates calculated from instrument proposal data
- Event data is collected as a list of timestamps for each spectrum
- High data rate creates a long list
- ESS average rate is ~8GB /min

	Event rate corrected for sample scattering	MB/s/MW	1 minute collection GB (1MW)
LOKI	1.E+06	20	1.2
SKADI	0.E+00	20	1.2
Estia	4.E+07	500	30
Friea	6.E+05	10	0.6
Dream	9.E+06	100	6
Hiemdal	1.E+07	150	9
BEER	2.E+05	3	0.18
Magic	4.E+07	500	30
NMX	7.E+03	0.1	0.006
ODIN	-	150	9
CSPEC	3.E+06	40	2.4
TREX	7.E+05	10	0.6
MIRICLES	3.E+05	4	0.24
BIFROST	0.E+00	4	0.24
VESPA	3.E+05	4	0.24

EUROPEAN SPALLATION

To solve the data rate challenge

- The processing has to keep up with the experiment
- Optimise software, hardware and network
- Use the ADARA method of acquisition and live data treatment.
- Use automated reduction
- Use distributed computing SAAS
- Improve Mantid performance

The detector geometry challenge

- 3 key issues
 - Shape
 - Position
 - Number

- 10B Detectors are not geometrically simple to describe
- Channel count is increased to deal with the rate
- Each instrument is different
- Instrument detectors are not always static

EUROPEAN SPALLATION

Geometry & calibration

- Scientifically the actual r,t,p and x,y,z co-ordinates are required.
- One cannot rely on the engineering positions.
- 10B Geometries add an extra dimension to this problem.
- Gas pressure is not fixed therefore gain is not fixed over time

The source challenge

- There is no existing long pulse spallation neutron source.
- Fluctuations in the ion source will lead to fluctuations in neutron flux ~8%
- Proton beam rastoring will cause fluctuations ~10-20%
- WFM is new and essentially untested
- Normalisation of data will be challenging
- Stitching poorly normalised data is not possible.

(a) 0.8 Å neutron pulse produced by thermal moderator: grey line from ideal proton pulse, red line from worst case proton pulse (black line, not to scale)

(b) 2.5 Å neutron pulse produced by cold moderator: grey line from ideal proton pulse, blue line from worst case proton pulse (black line, not to scale)

(a) 0.8 Å neutron pulse produced by thermal moderator from a single rastered pulse.

(b) 0.8 Å neutron pulse produced by thermal moderator averaged over 2 rastered pulses: direct and inverted.

from a single rastered pulse.

(c) 2.5 Å neutron pulse produced by cold moderator (d) 2.5 Å neutron pulse produced by cold moderator averaged over 2 rastered pulses: direct and inverted.

EUROPEAN

SPALLATION SOURCE

Examples for ESS

- EUROPEAN SPALLATION SOURCE
- 11

- SANS
 - Correction of data to 1D or 2D I(q) or I(qx,qy)
- Powder diffraction
 - Correction of data to 1D representation of intensity vs d spacing
- Single crystal diffraction
 - Peak finding and integration to list of **HKL** integrated intensity & sigma
- Reflectometry
 - Correction of data to 1D I(q) or 2D I(qx,qy)
- Spectroscopy
 - Correction to S(q,w)
 - Generation of 4D datasets

Reduction deliverables for instruments

- Massively improved Mantid core framework
- Automated reduction service*
 - Distributed architecture (MPI)
- Reduction scripts & workflows
- Interface to UI
- Integration with automated reduction
- Integration to the experiment control
 - managed configurations
 - Vanadium files
 - background data

Data visualisation

ParaView

- Higher rates = more data
- Distributed reduction
- Remote access
 - The data is not on a local machine its too big
- 4D data
 - Parametric studies
- Utilise distributed paraview

Deliverables for instrument commissioning

- Reduction workflows & interfaces
- Visualisation
- Detector visualisation
 - Calibration
- Integration of experiment control
 - experiment configurations and integration of hardware and DAQ

EUROPEAN

- Mantid was a TS2 Construction project started in 2007.
- The objective was to remove single point software failures.
- Create a sustainable reduction framework.
- Handles event mode data
- Used by many existing facilities
- Works in a 'live' manner with ADARA type acquisition
- Currently limited to a regular geometries and stationary instruments.

Experiment control

- Experiment control at ESS will be a beyond the current state of the art.
 - Instrument science cases are based on complex instrumentation
 - Complex modes of data acquisition WFM,RMM
- This complexity has to be useable and maintainable
- There is no off the shelf solution that fits all the ESS edge cases

Scientific interface

- The UI has to simplify the architecture
- Connect all the dots
 - Device control
 - DAQ control
 - Error conditions and alarms
 - Reduction / visualisation
 - Data curation cataloging
 - User office information
 - Logging and history
- NicosII is developed by TUM as a high level controls abstraction layer
- Lightweight Python framework
- Qt based GUI

EUROPEAN SPALLATION

- The community expect excellence
- The data have to be correct
- Use of open source software is not cost neutral

Mantid development cost & schedule

- 3 releases per year
- Estimates taken from development team at ISIS and SNS
 - develop and test new workflow using existing framework including UI
 - 3-6pm
 - Same with new framework features required
 - 6-12pm
 - Core framework changes
 - 12+pm

FUROPEAN

Controls development cost and schedule

- Control roll out
 - Core development ISIS 3 years 13py effort. ~1.2M euro
 - Development replicates existing workflow.
 - Developers have combined 30+ years experience at ISIS

Comparisons

EUROPEAN SPALLATION

- ISIS construction projects
 - IBEX 19py development from scratch
 - Mantid ~18-20py development from scratch
 - These are numbers for core frameworks
 - No meaningful instrument / technique specific work.
- ISIS operation
 - ~18FTE developing Mantid
 - 6FTE developing IBEX for 3 instruments

13.4.3: Resource and Task Estimation

EUROPEAN SPALLATION SOURCE

Bottom up estimate 47PY effort

40PY available for ESS construction phase

Experiment Control	ру	Cost (ESS rates)	Data reduction & visualisation	ру	Cost (ESS rate)	
Core FW	10	1080	Core FW	8	864	
	0.7	72	Sans	1	108	
	0.7	72	Diffraction Crystal	1	108	
SKADI	0.7	72	diffraction Powder	1	108	
HIEMDAL	0.7	72	Engineering	1	108	
DREAM	0.7	72	Imaging	1	108	
MAGIC	0.7	72	Pofloctomotry	-	109	
ODIN	0.7	72	Reflectometry	T	100	
BEER	0.7	72	DG spec	1	108	
CSPEC	0.7	72	indirect spec	1	108	
TREX	0.7	72	SANS vis	1	90	
MIRACLES	0.7	72	Diff Vis	1	90	
VESPA	0.7	72	Imagaing Vis	1	108	
BIFROST	0.7	72	DG Vis	1	108	
ESTIA	0.7	72	Indirect Vis	1	90	
FRIEA	0.7	72	Reflectometry vis	1	90	
Training	0.7	72	VATES toolkit	1	90	
Documentation	0.7	108	Training	1	108	
Totals	22	2376	Documentation	1	108	
			Totals	25	2700	

13.4.3: Instrument Data Group Budget & In-Kind

EUROPEAN SPALLATION SOURCE

	Construction Budget (M€)
Staff	1.6
Travel & Training	0.3
Experiment control inkind	1.5
Reduction inkind	2.0
Instrument data group total	5.5

ESS/DMSC core team

STFC ISIS In-Kind team

Core team employed at ESS

STFC in-kind agreement Started 1st Jan 2016

PSI 1.5M euro agreement for experiment control development agreed (PSI & ESS)

13.4.3: Instrument Data Group High Level Schedule

2015	2016	2017	2018	Ops MS TG4 -12m	20xx	
Requirements, interface documentation & design	Dev Iter1 Dev Iter2 Core framework develop	Dev Iter3 Dev iter4	Dev iter 5 Dev iter 6 Beam line customisations	Dev iter 7	G4	TG5
ESSIP integration lab available on line testing					Integr	rated
Driginally planned for HC of instrument 1 in Q4 2019					testin	g & cold nissioning

~24m of core development of reduction and controls framework followed by instrument / science area tasks

Instrument / science area tasks should mirror instrument schedule -12m

The lack of a defined instrument construction schedule will soon become a planning issue

Questions

? ? ?