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Background

Part of series of studies on power overhead reduction in RF field control

1. Power Overhead Reduction for RF Field Control in Beam Commissioning, ESS-doc-263.
2. Calculation on Power overhead in ESS High Beta Cavity Control, ESS-doc-244.

3. Power Overhead Calculation for Lorentz Force Detuning, ESS-doc-184.

4. Some Considerations on Pre-detuning for Superconducting Cavity, ESS-doc-174.

Examine the possibilities of less than 10% power overhead (25% or more
are assumed at the beginning, without detailed studies )

Investigations already exist in other project and labs (Jparc, Desy). For
instance, the goal of ILC project: 5%.

Advantage at ESS: one cavity per klystron, most are cold linac, cavity
field stability not high (1%, 1 deg.), high cavity bandwidth, powerful new
technology.

early example for RF field control (analog control) at Los Alamos in
1967. 2 deg. phase and £1.5% amplitude, ~200 kHz bandwidth.
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+ Klystron cathode
voltage ripple:
1%, | kHz
+ Beam fluctuation:
droop: 2%
random noise:
2%
+ QI variation:
-30%
+ Lorentz force
detuning: K=1Hz/

MV, T =Ims
+ Feedback

Loop gain: 50
Loop delay: 2us
Feedforward
for LFD
+ Set point adjust
+ Pre-detuning for

sync. phase and
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“"0Overhead at beam commissioning

o

B Sjtuation are more complicated when it comes to the beam
commissioning

B Deal with different beam modes with different beam current, pulse
length, arrive time.

B Perturbation to the cavity field caused by beam loading is significant
and results in considerable power overshoot under feedback control
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Amplitude / MV

Power / MW

Overhead at beam commissioning

Behaviors are different among different beam modes

peak power depends on the error when system transient response reaches its first overshoot
peak, limited by system bandwidth. P = error -G
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Worse at normal conducting cavity

Normal conducting cavities (RFQ, DTL) have much lower Ql, ~ factor of 30.

Control is much more difficult due to low loop gain (~2, compared to 50 in
superconducting cavity)

Beam loading is a very high frequency perturbations, and cannot be well
compensated by integral controller
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-~ FeedForward vs. Adaptive FeedForward

Feedforward Controller
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“Solution: Individual FF compensation

o

B |ndividual FF(feedforward)compensation for each beam
modes, by knowing its peak current, pulse length, arrival time.

FF compensation
I | Feedforward Controller
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Feedback only

Forward and Reflected Powers
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Feedback + Feedforward
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Performance under errors

B Beam current fluctuation, random noise

B Beam arrival time jitter (better performance achieved when
arrival time jitter <100ns)
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Slide from Mathieu

OMET,
Beam Compensation - @ (E)

AA over A

Beam gate delay scan @ 3 mA beam, 10000 bunches
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Klystron linearization
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Conclusion

Behaviors of Different beam mode loading are different in the cavity,
peak current change are more concerned by cavity control.

Power overhead issue becomes severe for higher peak current beam
under feedback. Situation gets worse for normal conducting cavity field
stability

Individual compensation for each beam modes seems promising, with
powerful modern technologies. Output limiter with klystron linearization
expects to be another big contribution for overhead reduction

To deal with such new challenges, LLRF prototype hardware will employ
10 input channel (2.5 times as SNS ), ~1000 times bigger memory, and
faster CPU, communication...

10% power overhead investigation continues...
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