

Document Type Document Number Date Revision State Confidentiality Level Page Requirement Specification ESS-0054765 Apr 4, 2016 1 (1) Preliminary Internal 1 (29)

System Requirements for the BIFROST instrument

	Name	Role/Title
Owner	Rasmus Toft-Petersen	Lead Instrument Scientist, BIFROST
Reviewer	Ken Andersen	NSS Lead Instrument Scientist
	Oliver Kirstein	Head of Instrument Technologies Division
	Arno Hiess	Head of Scientific Activities Division
	Gabor Lazslo	NSS Lead Instrument Engineer
Approver	Shane Kennedy	NSS Project Leader

TABLE OF CONTENTS

PAGE

1 SCOPE		
2 ISSUING ORGANISATION		
3 REQUIREMENTS		
3.1Background and guidelines for generation of requirements33.1.1Requirements Categories		
 3.2 Functional Requirements		
3.2.2 Sample Exposure System, SES – PBS 13.6.5.2		
3.3Constraint Requirements203.3.1Operational constraint requirements203.3.2RAMI requirements213.3.3Environmental Requirements233.2.1Conventional Safety Requirements243.2.2Radiation Safety Requirements243.2.3External Interface Requirements26		
4 GLOSSARY		
5 REFERENCES		
DOCUMENT REVISION HISTORY		

Document Type Document Number Date Revision State Confidentiality Level Requirement Specification ESS-0054765 Apr 4, 2016 1 (1) Preliminary Internal

1 SCOPE

The scope of the BIFROST system, of which the requirements are presented in this document, is defined in accordance with the instrument system originally proposed, ref [1], endorsed by SAC and approved by STC (now Council). The scope of the system is limited to those items lying within the budgetary responsibility of the instrument project as defined in [xxxx] and excludes systems vital to the instruments purpose not lying within these boundaries like the ESS bunker, the spectroscopy related parts of the DMSC project, the ICS etc. These, however, represent essential functions for the functionality of the BIFROST system and hence those interfaces to BIFROST comprise indispensible requirements of the BIFROST system, which will be covered in this document as External Interface Requirements.

The scope of BIFROST for the system to enable to fulfil the high level scientific requirements as outlined in the BIFROST Concept of Operations document (2. High Level Scientific Requirements), ref [2]. Consequently, the system consists of and is limited to the subsystems outlined in the BIFROST Concept of Operations document, ref [2], in Chapter 3.4 (System Overview). These are reflected in the highest level PBS of BIFROST as follows:

Figure 1. BIFROST Product Breakdown Structure, PBS

The functional requirements will be structured accordingly.

2 ISSUING ORGANISATION

ESS-ERIC, Science Directorate, NID/NSS

3 REQUIREMENTS

3.1 Background and guidelines for generation of requirements

This entire section should be regarded as a brief background providing guidelines, in support of the selected development approach for neutron instruments intended for the European Spallation Source ERIC, to this document; the System Requirements Specification (SRS).

The instrument team can choose to remove the section or keep it in the final document. However it could be beneficial to keep the section, at least until the conclusion of TG2 as the information contained herein could be useful to the TG2 review panel.

3.1.1 Requirements Categories

ESS has organized system requirements in three categories. Ideally they can be separated as follows: Functional categories – generally answering to the "what" is performed by the system, the second category is Constraint requirements (sometimes referred to as non-functional requirements) – generally answering to the "how" a function is performed by the system and finally the performance requirements category – generally answering to the "how" a function is constraint affects the system design.

In reality it is often difficult to differentiate between what is a functional and what is a constraint requirement. Performance requirements are in principle either functional or constraint requirements with limiting statements quantifying the satisfaction level.

To clarify: In principle, constraint requirements do not impact on the functionality of the instrument. They will however have a lesser or greater impact on the design choices of the instrument in order to achieve the intended functionality. They could also have an impact on the performance of the instrument.

3.1.2 Requirements pre-requisites

When creating requirements the following principles should be respected:

- each requirement is necessary,
- each requirement is unique,
- each requirement is verifiable, (although almost impossible to avoid especially in Scientific applications it is encouraged to not utilize statements such as: "optimize", "maximize" or "minimize" which could be unverifiable),
- attempt to address each phase of the life cycle, as completely as possible, incl. decommissioning,

3.1.3 Requirement wording

Requirements are written in statements using shall or should, where the former implies a mandatory statement and the latter is a non-mandatory one. Should is used to set a goal which if fulfilled would increase the performance or functionality of the system. It can trigger discussions of prioritizing and how they can be achieved and at what impact (mainly to cost but also with respect to e.g. future upgrade possibilities etc.).

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

For examples see below:

Id	Text	Trace up to
xxx.nn1	When signal x is received [Condition], the system [Subject] shall set [Action] the signal x received bit [Object] within 2 seconds [Constraint], so that signal x status can be assessed <rationale>.</rationale>	Yyy.nn3
xxx.nn2	At sea state 1 [Condition], the Radar System shall detect targets at ranges out to [Action or Constraint] 100 nautical miles [Value], so that <rationale>.</rationale>	Үуу.239
xxx.nn3	The Invoice System [Subject] shall display pending customer invoices [Action] in ascending order [Value] in which invoices are to be paid, so that <rationale>.</rationale>	Yyy.nn7

3.1.4 System Requirements and Architecture Design

The top-level system requirements activity is generally followed by an activity to logically decompose the system (instrument in this case). The outcome is the Product Breakdown Structure, PBS. The PBS is the selected/preferred architectural design solution for the instrument. It could be developed and documented in a separate document – System Architecture Description. This is justified in the case of starting with a clean sheet of paper.

It is however encouraged that a mind-set of a semi-clean sheet of paper is established, as there could be opportunities to explore and come up with functional blocks that not yet exist (ESS definition-wise) but will solve design challenges in a more efficient manner.

When deriving the PBS one or more alternatives are generally created. This is done by grouping the functional requirements into logical blocks. In the case of Neutron Instrument development there already exists a basic number of established building blocks that inevitably will be used, in some configuration, in an architectural solution for the instrument. This combined with the stipulated utilisation of the generic Neutron Instrument PBS these building blocks and the selected level of breakdown of the Instrument for this SRS, i.e to the first sub-system level, ref Figure 1, implies that generated alternative architectures will most likely not lead to a different PBS structure for the subsystem level, as they all are catered for in the generic PBS. The different architectures will first differ on lower levels of the PBS, which is outside the scope of this SRS. Hence there is no need to develop a separate System Architecture Description for the instrument on this level. The logical grouping is done instead in this SRS and allocated in accordance with the generic PBS.

The logical decomposition will take place for the lower system levels, using the requirements in this SRS as the foundation to further breakdown and allocated as appropriate. This work will to some extent be done in the activities culminating in the scope setting meeting, as up to three instrument configurations, all able to meet the high level scientific requirements, shall be considered.

Document TypeRequDocument NumberESS-0DateApr 4Revision1 (1)StatePrelirConfidentiality LevelIntern

Requirement Specification ESS-0054765 Apr 4, 2016 1 (1) Preliminary Internal

The selected System Architecture is used to define and generate interface requirements between the sub-system as defined by the generic PBS. While this is documented at a later stage it is suggested that interfaces between sub-systems are considered early on.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2 Functional Requirements

The following sections breakdown the high-level scientific requirements to requirements that the major subsystems need to fulfil.

3.2.1 Beam Transport and Conditioning System (BTCS)– PBS 13.6.5.1

Id	Text	Trace up to
1	Wavelength Transportation Range: 1.5 Å – 7 Å	ConOps HLSR: I, II, V and
	The BTCS shall transport neutrons with wavelengths from 1.5 Å to 7 Å from the cold moderator surfaces, with a minimum brilliance transfer of 20 % for the lowest wavelengths	3.2., 3.4.2
	Rationale: Maintain a large dynamic range for BIFROST	
	Verification: Gold foil measurements, vanadium measurements, inelastic benchmark measurements	
2	Transported Divergence up to +/- 0.75 degrees	ConOps HLSR:
	The transported divergence shall be +/- 0.75 degrees on average (intrinsically wavelength dependent)	l; 4,15 and 3.2., 3.4.2.
	Rationale: Flux optimization, resolution flexibility	
	Verification: Beam profile measurements with neutron camera	
3	Beam Divergence Symmetry	ConOps HLSR:
	The wavelength dependent divergence transported by the BTCS shall have a symmetric distribution	l; 1,2,4,5, 15 and 3.2., 3.4.2.
	Rationale: Symmetric resolution function	
	Verification: Measurements of inelastic modes in reference system	
4	Beam spot size < 20 x 20 mm ²	ConOps HLSR:
	Rationale: Small sample optimization, resolution optimization	II-IV;7-9,11-15 and 3-2
	Verification: Neutron camera at sample position	unu 3.2.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
5	Full Pulse Wavelength Resolution at 2.5 Å: less than 4 % Rationale: Full utilization of ESS flux. The wavelength resolution translates to an energy resolution of 0.6 meV at $E_i =$ 13 meV and $\Delta E = 8$ meV, matching the range of cold triple axis spectroscopy	ConOps HLSR: II&IV8,11,12, 14,15 and 3.2.
6	Verification: Crystal field excitation measurement.	0 0 11100
0	Total flux in the wavelength range 2.3-4 Å > 10 ¹⁰ n/s/cm ² Rationale: Unprecedented flux for spectroscopy Verification: Gold foil measurements	ConOps HLSR: II,III, 7-9, 11- 15 and 3.2., 3.4.5.
7	Pulse shaping: Pulse duration down to 0.1 ms Rationale: A pulse duration of down to 0.1 ms results in an energy band of 50 μ eV at E _i = 20 meV – matching the acceptance energy band of the high energy analyzer, allowing for energy resolution down to 0.33 % at Δ E = 15 meV <i>Verification:</i> Crystal field excitation measurements at Δ E = 15 meV	ConOps HLSR: I-IV;2-8,12-15 and 3.2., 3.4.7.
8	Full utilization of the ESS pulse interval of 71 ms Rationale: Optimizing the single setting wavelength range for the maximum bandwidth of 1.7 Å. Requires BW chopper outside the bunker Verification: Vanadium sample and event mode recording of elastic line without analyzers	ConOps HLSR: II&IV8,11,12, 14,15 & 3.2. & 3.4.2 & 3.4.7.
9	Frame overlap removal Rationale: Unique identification of energy transfer, requires two choppers inside the bunker Verification: Vanadium sample and event mode recording of elastic line without analyzers	ConOps HLSR and 3.2., 3.4.7.
10	Flexible collimation down to 20' Rationale: Tailoring the Q-resolution using divergence jaws Verification: Steep dispersion measurement	ConOps HLSR and 3.2., 3.4.7.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
11	Bandwidth selection Rationale: Flexible tailoring of the energy window with which	ConOps HLSR and 3.2., 3.4.7. and 5.
	to measure, in the range of 3-60 meV	
	Verification: Measurement of multiple energy ranges on various test systems	
12	Beam Monitoring	ConOps HLSR
	<i>Rationale:</i> The BTCS shall allow for monitoring the beam flux with some indication of wavelength dependence via a model	I,II; 2,3,5, 12, 14,15 and 3.2.
	<i>Verification:</i> Test measurement of intensities on known sample.	
13	Inelastic background handling: Less than 5 cts / min	ConOps HLSR
	<i>Rationale:</i> The BTCS shall have substantial shielding of the direct beam, reducing the inelastic background	I,II,III,IV; 2,3,5,7,12,13, 14 and 3.2., 3.4.3 5.3.3.
	<i>Verification:</i> Inelastic background without sample, but with sample environment.	
14	Beam transport in cave	ConOps HLSR
	<i>Rationale:</i> The BTCS shall remove air scattering as a source of background from the direct beam, both before and after the sample by providing evacuated transport tubes	I,II; 2,3,5, 12, 14,15 and 3.2.
	<i>Verification:</i> Measurement of inelastic background with and without evacuation	
15	Low emittance beam stop – less than 100 kBq at tank wall	ConOps HLSR
	<i>Rationale:</i> The BTCS shall handle the direct beam outside the cave, with lead gamma shielding, reducing the gamma activity to 100 kBq at the tank wall. In addition, backscattered neutrons from the B4C beam stop shall be reduced by an order of magnitude	l,II; 2,3,5, 12, 14,15 and 3.2.
	<i>Verification:</i> Measurement of gamma intensity at tank wall in production mode.	

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2.2 Sample Exposure System, SES – PBS 13.6.5.2

Id	Text	Trace up to
16	Flexible mount	ConOps HLSR and 3.2.,
	Rationale: The SES system should be adjustable to	3.4.7., 5.
	accommodate a range of magnets and cryostats with a correct	
	height to within 1 mm of the beam position, via adapters.	
	Verification: Elastic scan with pointlike vanadium source	
17	Precise sample rotation to within 0.01 degrees	ConOps HLSR and 3.2.,
	<i>Rationale:</i> Precise sample orientation is crucial for correct measurements	3.4.7., 5.
	Verification: Laser alignment	
18	Non-magnet surroundings, less than 20 kilos for 25 T at sample position	ConOps HLSR and 3.2., 3.4.7., 5.
	Rationale: To allow safe operation of high field magnets	
	<i>Verification:</i> Force measurements on permanent magnets and cold cryomagnets in operation.	
19	Maximum load: 5000 kilos	ConOps HLSR and 3.2.,
	<i>Rationale:</i> Future capacity for a non-specfified high-Tc magnet design	3.4.7., 5.
	Verification: By design	
20	Motor control for internal sample environment motors	ConOps HLSR and 3.2.,
	Rationale: Flexible operation	3.4.7., 5.
	Verification: By design	
21	Space for sample environment support structure	ConOps HLSR and 3.2.,
	Rationale: Allowing for power supplies, gas handling, and cryogenics next to the sample position	3.4.7., 5.
	Verification: By design	

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2.3 Scattering Characterization System, SCS – PBS 13.6.5.3

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
22	Reachable scattering angle range: 10-130 degrees <i>Rationale:</i> To maximize the Q-range for the wide range of recorded final energies.	ConOps HLSR 4, 15 and 3.2.
23	Total coverage in a single setting > 70 degrees <i>Rationale:</i> To cover more than half of the Q-range in a single setting, to enable single point parametric studies.	ConOps HLSR: 1, 14, 15 and 3.2.
24	Total analyser area > 0.6 m² <i>Rationale:</i> To allow for fast and efficient determination of dispersion surface characteristics. Absolute minimum for basic scope	ConOps HLSR: II,III,IV; 3,7-9, 11-13, 14,15 and 3.2., 3.4.9.
25	2D detector position sensitivity at analyser Bragg angles <i>Rationale:</i> To allow variable Q-resolution and to allow for the prismatic analyser option	ConOps HLSR: 2 and 3.2.
26	Non-prismatic resolution of analyzers < 180 μEv Rationale: Optimizing the curvature for standard cold triple axis resolution – to be used in a maximum signal setting Verification: Elastic line resolution measurements	ConOps HLSR: 3 and 3.2.
27	Prismatic resolution of highest energy analyzers < 60 μEv Rationale: To use 1D position sensitivity of the detectors to improve the resolution of the secondary spectrometer <i>Verification:</i> Elastic line resolution measurements	ConOps HLSR and 3.2., 3.4.9.
28	Vacuum in the secondary spectrometer tank Rationale: To reduce background and sources of spurious signals. Verification: Pressure sensor	ConOps HLSR and 3.2., 3.4.9.
29	Detector efficiency > 85 % Rationale: To maximize inelastic signal Verification: Benchmark sample	ConOps HLSR and 3.2., 3.4.9.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

30	Detector saturation at count rate > 20000 cts/s	ConOps HLSR
	<i>Rationale:</i> To be able to detect medium strength Bragg peaks, for straightforward modelling the elastic region	and 3.2., 3.4.9.
	Verification: Beam profile examination	
31	Detector short burst capability > 100000 cts/s	ConOps HLSR
	<i>Rationale:</i> To be able to handle strong Bragg peaks, without damaging the detectors	and 3.2., 3.4.9.
	Verification: By design	
32	PG neutron mosaicity: 1 degree	ConOps HLSR
	Rationale: To enable the prismatic analyser option	and 3.2., 3.4.9.
	Verification: Neutron diffraction measurements	
33	Off-energy PG transmission above 95 %	ConOps HLSR
	Rationale: To efficiently allow full multiplexing capabilities	and 3.2., 3.4.9.
	Verification: Online commissioning.	
34	Spectrometer tank thermal neutron attenuation < 10 ⁻⁸	ConOps HLSR
	<i>Rationale:</i> To efficiently shield powder Bragg peaks generated off the sample position	and 3.2., 3.4.9.
	Verification: Online commissioning.	
35	Spectrometer tank access: More than 80 cm to all sides	ConOps HLSR
	Rationale: Easy access to critical components	and 3.2., 3.4.9.
	Verification: By design	
36	Cross-talk shielding attenuation < 10 ⁻⁶	ConOps HLSR
	<i>Rationale:</i> To efficiently spurious scattering from Bragg peaks, B4C and similar	and 3.2., 3.4.9. and 5.
	Verification: Direct beam measurements	
37	Beryllium filter high energy attenuation < 10 ⁻³	ConOps,
	<i>Rationale:</i> To reduce the accepted scattering energies to the interval [0:5] meV to reduce PG background	ESS-0001786 "Supervised area" versus
	Verification: Bragg peak measurements with and without filter	3 rd safety area
38	Beryllium filter low energy transmission > 90 %	ConOps HLSR
	Rationale: To maximize inelastic signal	and 3.2., 3.4.9.
	Verification: Bragg peak measurements with and without filter	

Document Ty Document Ne Date Revision State Confidentiali	/pe umber ty Level	Requirement Specification ESS-0054765 Apr 4, 2016 1 (1) Preliminary Internal	
39	Bery sam	llium filter radial collimation 5 % acceptance radius at ple position < 7 cm	ConOps HLSR and 3.2.,
	<i>Ratio</i> from spec	onale: To block both incoherent and coherent scattering the bulk sample environment from entering the trometer tank	3.4.9. and 5.
	Verij	fication: By design, calculations	
40	Bery sam	llium filter radial collimation 95 % acceptance radius at ple position > 1.5 cm	ConOps, ESS-0001786
	<i>Ratio</i> envi	onale: To accept sample scattering regardless of sample ronment	"Supervised area" versus 3rd safety
	Verij	fication: By design, calculations	area
41	Bery plan	llium filter should be translatable out of the scattering e	ConOps HLSR and 3.2.,
	<i>Ratio</i> anal	onale: To be able to align sample using second order yser reflections	3.4.9. and 5.
	Verij	<i>fication:</i> By design	
42	Radi 2.5 c	al collimator 5 % acceptance radius at sample position < m	ConOps, ESS-0001786
	<i>Ratio</i> sam	onale: To remove inelastic background from special ole environments that envelop the sample closely	area" versus 3rd safety
	Verij	fication: By design	area
43	Radi 0.5 c	al collimator 95 % acceptance radius at sample position > m	ConOps HLSR and 3.2.,
	Ratio	onale: To accept full signal from small samples	3.4.9. and 5.
	Verij	fication: By design	
44	Radi	al collimator translatable out of the scattering plane	ConOps,
	Ratio 1x1x	onale: To efficiently be able to use samples larger than 1 cm ³	ESS-0001786 "Supervised area" versus
	Verij	<i>fication:</i> By design	3rd safety area
45	Mec	hanical Bragg peak attenuation system	
	<i>Ratio</i> capa	onale: To automatically block very strong Bragg peaks ble of damaging the detectors.	
	Verij	<i>fication:</i> By design	

3.2.4 Experimental Cave, EC – PBS 13.6.5.5

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
46	The Experimental Cave – access to all components in production mode	ConOps 3.& 5.
	<i>Rationale:</i> With experimental shutter closed, all intrinsic parts of the SCS and SES should be accessible	
	Verification: By design	
47	The Experimental Cave – Flexible support structure	ConOps 3.& 5.
	<i>Rationale:</i> Support structure for human access should be flexible to allow for various sample environments.	
	Verification: By design	
48	The Experimental Cave – Utilities access	ConOps 3.& 5.
	The Experimental Cave shall have access to a variety of utilities including various power outlets (10A, 15A, 20A 32A), chilled water, compressed Instrument air and gas supplies.	
49	The Experimental Cave – Utilities removal	ConOps 3.& 5.
	The Experimental Cave should allow for removal of exhaust gases and cooling water etc. Helium exhaust is especially needed to allow for cryogenics.	
50	Biological shielding, Experimental Cave – Access SES while proton be on Target, acceptable dose level	ConOps 3.& 5. ESS-0001786
	The dose level in the Experimental Cave when accessing SES in it, with shutters closed, shall be 3µSv/h in accordance with ESS-0001786 & ESS-0051603.	ESS-0051603
51	Biological shielding, Experimental Cave – Access to SES during irradiation	ConOps 3.& 5.
	Experimental Cave shall prevent access to the SES while a sample irradiation is occurring.	
52	Biological Shielding, Experimental Cave – dose attenuation	ConOps 3.& 5.
	The Experimental Cave shall attenuate the dose rate emanating from the SES and SCS during a sample irradiation , i.e shutter open, to 3μ Sv/h, in accordance with ESS-0001786 & ESS-0051603,	ESS-0001786 ESS-0051603

Document Tyj Document Nu Date Revision State Confidentialit	e Requirement Specificat hber ESS-0054765 Apr 4, 2016 1 (1) Preliminary Level Internal	ion	
53	Experimental Cave – Liquid nitrogen line and wire access		ConOps 3.& 5.
	Rationale: Cryogenics from a dewer placed of environment power so to traverse the cave w	should be able to be filled automatically outside the cave, and sample upplies and sensor cables should be able vall while in operation.	
	Verification: By design	ı.	
54	Experimental Cave – S	Sample radiation interlock	ConOps 3.& 5.
	<i>Rationale:</i> Gamma rac close to the sample ar case of a sample dose distance	diation monitors should be positioned nd automatically prevent cave access in larger than 100 uSv/h at 1 meter	
	Verification: By design	1.	
55	Experimental Cave –	Visual monitoring of cave	ConOps 3.& 5.
	Live CCTV shall allow f	for visual control of movements in cave.	
56	Experimental Cave – I	Floor Space	ConOps 3.& 5.
	The Experimental Cav	e shall provide a floor space > 40m ²	
57	Experimental Cave – I	Beam access height	ConOps 3.& 5.
	The Experimental Cavor of 1.5m at least along specified)	e shall have a floor to beam axis height beam for manual manipulations (to be	
58	Experimental Cave –	Object accommodation	ConOps 3.& 5.
	Entry to the Experime of apparatus up to 1m	ntal cave shall allow for the movement wide X 1m thick X 2m tall.	
59	Experimental Cave – S	SES accessibility	ConOps 3.& 5.
	Access to the SES at fr	om the top is necessary for craning and other sample environment	

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2.5 Control Hutch, CH – PBS 13.6.5.6

Id	Text	Trace up to
60	Control Hutch – Instrument control terminal(s) The control hutch shall allow the user to remotely control the technical components from dedicated computer terminals and view live streams of detectors and CCTV.	ConOps 3.& 5.
61	Control Hutch – sample environment terminals The control hutch shall allow the user to remotely control the sample environment systems detector systems from dedicated computer terminals.	ConOps 3.& 5.
62	Control Hutch – Data reduction terminal The control hutch shall allow the user to process the neutron data	ConOps 3.& 5.
63	Control Hutch – Data analysis terminal The control hutch shall allow the user to analyse the processed data, using benchmark models.	ConOps 3.& 5.
64	Control Hutch – Comfort The control hutch should be a comfortable working environment for up to 6 users. ISO 11064-6 provides good guidelines for defining comfort and should be followed where possible.	ConOps 3.& 5.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2.6 Integration Control and monitoring, IC&M – PBS 13.6.5.12

Id	Text	Trace up to
105	IC&M – Instrument Control and Automation	ConOps 3.& 5.
	All motorized axes and electronic driven systems shall be	-
	remotely controllable with the instruments computer system	
106	IC&M – Monitoring	ConOps 3.& 5.
	All viable systems shall be monitored electronically and feed	
	back into the control system	
107	IC&M – Source pulse synchronizing	ConOps 3.& 5.
	A hardware signal synchronized with the source pulse shall be	
	available to the system	
108	IC&M – BIFROST Standalone mode	ConOps 3.& 5.
	All electronic systems shall be configured such that the	
	instrument can be controlled and utilized in a standalone	
	mode independent of the ICS.	
109	IC&M – Personal Safety System (PSS)	ConOps 3.& 5.
	The PSS shall be fully integrated into the Instrument control	-
	such that the Instrument can be operated safely.	

[1] Optimised refers to the best possible given the boundary conditions that will affect this requirement including other requirements and external influences.

[2] Natural resolution and natural bandwidth refer to values achievable without further pulse shaping, but provided by the source time structure at specific distances.

[3] The specific requirements for this system are under development and will be detailed at a later time.

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.3 Constraint Requirements

3.3.1 Operational constraint requirements

Id	Text	Trace up to
110	Operation Mode Changes – Mode Redundancy	ConOps 5.3.3
	Maintenance or failure issues of one mode shall have a minimum impact on other modes (That choppers are removable or that it is always possible to set them to an open position is more important than repair and maintenance times, which should be kept to a minimum however).	& 0.1.2
111	Sample environment changes	ConOps 3.& 5.
	Change of sample environment itself should take less than 1 full workday to perform, excluding setting time of temperature, field etc.	
112	Sample environment succession	ConOps 3.& 5.
	Fast acquisition experiments should be scheduled to save beam time costs, by pre-preparation of sample environment, in-situ sample changes and timely user coordination. An SAD representative should be involved in scheduling.	
113	Handling of radioactive samples at BIFROST	ConOps 3.& 5.
	Samples with reactive isotopes shall be scheduled at the end of cycles to allow for cool down. Feasibility evaluation for experiments at BIFROST should take radiation safety and requirements into consideration. Special procedures from the ESS side will be necessary for handling short lived active sample (days to weeks), and user caution is necessary for long lived active samples – especially those containing cobalt (Co- 60 has a half-life of 5 years)	

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.3.2 Reliability, Availability, Maintainability & Inspectability (RAMI) requirements

Id	Text	Trace up to
114	Operation Schedule	ESS-xxxxxx
	The system shall be operational according to the schedule of the ESS source and the set availability goals of NSS RAMI Handbook	NSS RAMI Handbook ; ESS-TBD, BIFROST ConOps 5.1
115	Maintainability	NSS RAMI
	The system shall be maintainable in a way fulfilling the Operation Schedule requirement (above).	Handbook ; ESS-TBD, BIFROST ConOps 5.3
116	Access	NSS RAMI
	Instrument components shall be accessible for all maintenance and repair activities needed to fulfil the Operation Schedule and Maintenance requirements (above).	Handbook ; ESS-TBD, BIFROST ConOps 5.3, ESS-0039408
		NOSG Handbook (Annex N)
117	Reliability – MTBF (Mean Time Between Failure)	NSS RAMI
	Instrument components and sub-systems shall meet MTBF requirements (as specified elsewhere in detail) that enable to meet the Operation Schedule requirement (above).	Handbook ; ESS-TBD, BIFROST ConOps 5.3
118	Availability – MTTR (Mean Time To Repair)	NSS RAMI
	Instrument components and sub-systems shall meet MTTR requirements (as specified elsewhere in detail for critical sub-systems) that enable to meet the Operation Schedule requirement.	Handbook ; ESS-TBD, BIFROST ConOps 5.3
119	Internal Interfaces (physical connection)	BIFROST
	Instrument sub-systems shall be connected and integrated such to enable to meet the functional and other RAMI requirements.	ConOps 3.4
120	Design Robustness	BIFROST
	The overall system design shall enable to meet the Operation Schedule requirements through robustness against single sub- system failure.	ConOps 5.3.3 & 6.1.2

Document Type Requirement Specification			
Document Number ESS-0054765		ESS-0054765	
Date Apr 4, 2016		Apr 4, 2016	
Revision		1 (1)	
State Preliminary		Preliminary	
Confidentiality Level		Internal	
Id	Text		Trace up to
121	Spare	25	BIFROST
	The s	ystem shall include spares critical to meet OS requirement.	ConOps 5.3.3

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.3.3 Environmental Requirements

Id	Text	Trace up to
122	Shielding The radiological shielding of the system shall satisfy all applicable legal regulations incorporated in ESS procedures, guidelines, handbooks etc. to guarantee safe operation concerning radiation hazards.	ESS-0019931 ESS Procedure for designing shielding for safety , ESS-0052625 NOSG Phase 2 guidelines for designing instrument shielding, NOSG Handbook
123	Activation The Activation of system components shall comply with ALARA criteria, corresponding ESS procedures, guidelines, handbook, etc. incorporating applicable legal regulations, in particular also with respect to disposal.	ESS-0020168 NSS radioactive inventory - Part 2 (Exp. Hall and instruments), ESS-0052491 NSS radioactive inventory - Part 3 (Bunker)
124	Sample handling The system shall allow for sample handling procedures complying with ESS environmental policies and legal regulations incorporated in ESS procedures, guidelines, handbooks etc., in order not to pose an environmental risk.	ESS-0024112 Sample Handling Procedure
125	Materials The materials used in the system shall avoid environmental hazards and comply with all applicable legal regulations incorporated in ESS procedures, guidelines, handbooks etc.	ESS-0011452 ESS Procedure for sustainable selection of materials, ESS-0011458 ESS Guideline for sustainable selection of materials

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

3.2.1 Conventional Safety Requirements

Id	Text	Trace up to
126	Safety The system and all required operational procedures shall comply with ESS safety procedures, guidelines, handbooks etc. and legal regulations, incorporated in the former.	ESS-0043151 Conventional Safety, Energy and SSM Requirements
		, ESS-0039408 NOSG Handbook (Annex N)?

3.2.2 Radiation Safety Requirements

Id	Text	Trace up to
127	Activation The Activation of system components shall comply with ALARA criteria, corresponding ESS procedures, guidelines, handbook, etc. incorporating applicable legal regulations, in particular also with respect to disposal.	ESS-0020168 NSS radioactive inventory - Part 2 (Exp. Hall and instruments), ESS-0052491 NSS radioactive inventory -Part 3 (Bunker)
128	Sample handling The system shall allow for sample handling procedures complying with ESS environmental policies and legal regulations incorporated in ESS procedures, guidelines, handbooks etc., in order not to pose an environmental risk.	ESS-0024112 Sample Handling Procedure

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
129	Materials The materials used in the system shall avoid environmental hazards and comply with all applicable legal regulations incorporated in ESS procedures, guidelines, handbooks etc.	ESS-0039408 NOSG Handbook, ESS-0042895 Materials guideline intended for the construction of neutron chopper systems for use at ESS, ESS-0001786 "Supervised area" versus 3rd safety area Etc.
130	PSS The system shall feature a PSS complying with ESS regulations and policies that enables radiological safety for the access to sub-systems.	ESS-0004620 Basic Principles & Functions for PSS

3.2.3 External Interface Requirements

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

Id	Text	Trace up to
131	CF environment The system shall fit within and profit from the boundary conditions set through CF.	ConOps 3.& 5. NSS-Site Infrastructure IRS ESS-TBD; ref [4].
132	Neighbourhood Systems	ConOps 3.& 5.
	The system shall comply with the physical requirements of neighbouring systems and its design shall take into account needs of potential future neighbours (complying with ref. [x])	
133	ICS	ConOps 3.& 5.
	The system shall connect to the ICS in order to be controllable and survailable with respect to all viable functions through ICS.	
134	Data Streaming	ConOps 3.& 5.
	The system together with ICS shall enable to stream all recorded data through ICS to central data storage and back to instrument control/data computers.	
135	Remote Control Software	ConOps 3.& 5.
	The system shall interface with control software to satisfy all remote control requirements for operation, testing, maintenance and meta-data production for users and operators. A specification of which components and operations require remote control is provided elsewhere in the instrument documentation [x].	
136	Data Reduction Software	ConOps 3.& 5.
	The system shall be the basis for the specification of all required data reduction and visualisation through a GUI and through command line interface, suitable for use by users with only minor training requirements. Detailed requirements for the reduction software constitute the mayor part of the interface with DMSC/Data Reduction and are, while in a process of development available elsewhere [x].	
137	Sample Environment	ConOps 3.& 5.
	The system shall enable the use of pooled sample environment, as well as it should support custom designed SE from users or other groups.	
138	The system shall comply with the bunker design.	ConOps 3.& 5.
139	Vacuum	ConOps 3.& 5.
	The system shall connect with vacuum services where required.	

Document Type Document Num Date Revision State Confidentiality	e Requirement Specification lber ESS-0054765 Apr 4, 2016 1 (1) Preliminary Level Internal	
140	Monitoring The system shall enable monitoring with regards to radiological data, safety functions, operational conditions of sub-systems, vacuum, smoke, heat, specific gases etc. as required for safe operations by other sub-systems, systems and policies and regulations.	ConOps 3.& 5.
141	Required Services The system shall enable connection to all support systems and services provided centrally and required for operation not limited to but including these specified in these requirements.	ConOps 3.& 5.

4 GLOSSARY

Term	Definition
HLSR	High Level Scientific Requirements

5 REFERENCES

- [1] ESS Instrument Construction Proposal; ODIN Optical and Diffraction Imaging with Neutrons
- [2] Concepts Of Operations Example for the ODIN Instrument, ESS-0053465
- [3] NSS RAMI Handbook, ESS-TBD
- [4] NSS-Site Infrastructure Interface Requirement Specification (IRS), ESS-TBD
- [5] NSS-Target Station (Beam Extraction System) Interface Requirement Description, ESS-TBD
- [6] "Supervised area" versus 3rd safety area, ESS-0001786
- [7] NSS zoning document part 1, ESS-0051603

Document Type	Requirement Specification
Document Number	ESS-0054765
Date	Apr 4, 2016
Revision	1 (1)
State	Preliminary
Confidentiality Level	Internal

DOCUMENT REVISION HISTORY

Revisio n	Reason for and description of change	Author	Date
1	First issue	Markus Strobl/Peter Sångberg	2016-05-10