MAGiC configurations

Comments from the STAP

- "Polarization of both cold and thermal beams, and with full XYZ analysis of scattered cold neutrons is essential to the science program".
- "The ability to study very small samples is world-beating and should be available from Day 1."
- "Having 60 out of 160 deg. of large detector coverage for the thermal beam is acceptable for initial performance"
- "Provision of SE's including magnetic fields up to at least 10 T and dilution fridges is important."

<u>General comments</u>

- The design is upgradable to full scope

- Cost Category B = skeleton
- Balanced
- Full scope
- Desired upgrades will be presented

<u>Cost Category B : 11.96 M€</u>

Shielding & Cave		1411	
Shie	lding	954	
First Ellipse	476		Uwe design*material costs
Polarizer	99		Uwe design*material costs
Second Ellipse	159		Uwe design*material costs
Heavy Shutter	200		PSI estimate
Fast Shutter	20		Validated by Phil
Exp.	Cave	457	
Walls & Roof	296		Concrete price: 80 cm thick
Base Level	53		Concrete price: 60 cm base
B4C	108		217 m2 @ 5mm thickness

Shielding:

- Cost from recent material quotations or deliveries
- Shielding design from MCNPX calculations

Heavy shutter: 6 drums rotating in bunker wall

Exp. cave:

- Calculation based on 1e10 γ /s @ 2MeV at sample position
- B4C on walls: 1e-8 transmission @ 1.2 Å

<u>Cost Category B : 12.00 M€</u>

Shielding & Cave		1411	
Shie	lding	954	
First Ellipse	476		Uwe design*material costs
Polarizer	99		Uwe design*material costs
Second Ellipse	159		Uwe design*material costs
Heavy Shutter	200		PSI estimate
Fast Shutter	20		Validated by Phil
Exp.	Cave	457	
Walls & Roof	296		Concrete price: 80 cm thick
Base Level	53		Concrete price: 60 cm base
B4C	108		217 m2 @ 5mm thickness

Shielding:

- Cost from recent material quotations or deliveries
- Shielding design from MCNPX calculations

Heavy shutter: 6 drums rotating in bunker wall

Exp. cave:

- Calculation based on 1e10 γ /s @ 2MeV at sample position
- B4C on walls: 1e-8 transmission @ 1.2 Å

Shielding & Cave		1411	
Shie	lding	954	
First Ellipse	476		Uwe design*material costs
Polarizer	99		Uwe design*material costs
Second Ellipse	159		Uwe design*material costs
Heavy Shutter	200		PSI estimate
Fast Shutter	20		Validated by Phil
Exp.	Cave	457	
Walls & Roof	296		Concrete price: 80 cm thick
Base Level	53		Concrete price: 60 cm base
B4C	108		217 m2 @ 5mm thickness

Instrument Infrastruct	ture	505	
Sample prep. lab.	25		Glove box, Fume, Binocular, Small material
Control Hutch	100		2 floors, computers, desk, chairs, coffee machine, fridge
Crane/hook	30		1⊤ hook
Utilities	50		SAD request
Polished Concrete	9.6		16 m2 for detector support
PSS	100		Mean cost
Various cost	190		Mechanical assembly of concrete, metallic beam for support, mezzani

Man power		2118	
Phase 1	399		39 months
Phase 2	403		40 months
Phase 3	448		41 months
Phase 4	786		78 months
Travel	82		

MCA		362	
Hardware	65		32 motors + encoders + cable estimates
Man power	219		MCAG quote
Utilities	78		MCAG quote

Choppers		750	
PSC	50 0	JCNS estimate	
SC	125	JCNS estimate	
BC	125	JCNS estimate	

Manpower:

- Preliminary Gantt diagram
- Travel extrapolated from Phase 1 travel costs

MCA: validated by MCAG

Choppers: JCNS estimate (not including installation and commissioning)

Neutron Optics & Pola	ar	4695	
Op	tics	2577	
Super-mirrors	2047		Swiss Neutronics
Vacuum Housing	470		ILL based estimate
Focusing	0		Scaling from guide
Divergence	0		LLB estimate (DREAM)
Collimator	0		Eurocollimator quote
Bender	60		Analyzer scaling
Polari	zation	2118	
Analyzer	1885		PSI: materials, coating, manpower, overhead
Guide field	83		Magnets+soft iron
Saturation field	90		Magnets+soft iron
Rotator	10		2 rotators
Flipper	30		HF flipper
XYZ	20		Multicoil setup

Optics:

- Guide geometry and coating optimized (McStas)
- Simple and robust monolith insert

Polarization:

- Incident beam polarization
- Scattered beam XYZ polarization analysis
- Flipper, guide/saturation fields, rotators prototyped !

Sample Env. 90			
Sample table	40	Huber like	
Magnet	0	Estimate from IRFU	
Cryostat	0	LLB estimate	
Dilution Fridge	0	LLB estimate	
Piezo actuators	0	Attocube	
Various	50	Utilities	

No dedicated sample environment

- MAGiC will fully rely on the ESS pool equipment
- ~50% beam time make use of a magnet: strong support from ESS required !

Sample table.

Provision for utilities included.

Detectors & Monitors 874			
Monitors	40		2 PSD/TOF monitors
Large detector 1	590		36x48 @ 80% eff
Small detector	244		120x6 @ 100% eff
Bottom detector	0		6T2 technology estimate

<u>« Large » detector:</u>

- Reduced detector coverage: 37.5° x 48° (h x v)
- 80% of nominal efficiency (non upgradable)

Detectors & Monitors		874	
Monitors	40		2 PSD/TOF monitors
Large detector 1	590		37.5°x48° @ 80% eff
Small detector	244		120x6 @ 100% eff
Bottom detector	0		6T2 technology estimate

<u>« Large » detector:</u>

- Reduced detector coverage: 37.5° x 48° (h x v)
- 80% of nominal efficiency (non upgradable)
- Dedicated to half-polarized experiments

Small detector:

- 120° x 6° (h x v)
- Dedicated to polarization analysis experiments

SXD:	6.28 sr					
	SENJU	J: 4 sr				
		TOPAZ: 2	2.8 sr			
			D1	9:1	sr	
						5C1: 0.6 sr
				D7	2: 0.4 sr 6T2 0.2 sr	.]

SXD	: 6.28 sr		
	SENJU: 4 sr		
	TOPAZ: 2.8 sr D19: 1 sr D7: 0.4 sr 6T2 0.2 sr	5C1: 0.6 sr	Cost Cat. B 0.55 sr

Manpower: $2119 k \in$ Components: $8686 k \in$ Contingency: $1201 k \in$ Total: $12006 k \in$

Impact on the science case

With full support of the SE pool

Comments from the STAP

- "Polarization of both cold and thermal beams, and with full XYZ analysis of scattered cold neutrons is essential to the science program".
- "The ability to study very small samples is world-beating and should be available from Day 1."
- "Having 60 out of 160 deg. of large detector coverage for the thermal beam is acceptable for initial performance"
- "Provision of SE's including magnetic fields up to at least 10 T and dilution fridges is important."

Performance at 2 MW

Polarization analysis

MAGiC: 1.2.10⁹ n/s/cm²

upgraded D7: 2.10⁷ n/s/cm²

D7 detector: 2x MAGiC <u>Expected gain: **30**</u>

Performance at 2 MW

Thermal data collection

1 mm³ sample

Topaz (SNS) : 12 hours Expected gain: ~**10** 40 s per frame 100 frames per data collection

Full acquisition ~ 1 hour

Cost Category configuration +

Sample Env.		1435	
Sample table	40	Huber like	
Magnet	1000	Estimate from IRFU	
Cryostat	50	LLB estimate	
Dilution Fridge	250	LLB estimate	T 1343 KE
Piezo actuators	45	Attocube	
Various	50	Utilities	
Optics		2862	
Super-mirrors	2047	Swiss Neutronics	
Vacuum Housing	470	ILL based estimate	
Focusing	75	Scaling from guide	+285 k€ ∣
Diverg en ce	100	LLB estimate (DREAM)	
Collimator	110	Eurocollimator quote	
Bender	60	Analyzer scaling	

Detectors & Monitors		1360		
Monitors	40		2 PSD/TOF monitors	
Large detector 1	1076		60x48 @ 100% eff	186 №£
Small detector	244		120x6 @ 100% eff	1400 NT
Bottom detector	0		6T2 technology estimate	

Total: 12920 k€ + 11% = 14356 k€

SXD	: 6.28 sr		
	SENJU: 4 sr		
	TOPAZ: 2.8 sr D19: 1 sr D7: 0.4 sr 6T2 0.2 sr	5C1: 0.6 sr	Cost Cat. B 0.55 sr

SXD: 6.28 sr		
SENJU: 4 sr		
TOPAZ: 2.8 sr D19: 1 sr D7: 0.4 sr 6T2 0.2	5C1: 0.6 sr	Balanced 0.85 sr + (60%)

SXD: 6.28 sr				
SENJU: 4	sr			
то	PAZ: 2.8 sr			
	D19: 1 sr	+incre	ased efficiency:	+25 %
	D7: 0.4 sr 6T2 0.2 s	5C1: 0.6 sr	Balanced 0.85 sr + (60%)	

Sample environment:

Dilution fridge: **250 k€** 10 T split-pair vertical magnet with 156°x48° aperture: **1000 k€** Cryostat (LHe): **50 k€**

Sample stick goniometers and XY translation tables: **45** $k \varepsilon$

TOTAL: 1345 k€ MAGiC will be autonomous for most of its needs

Beam Shaping:

Focusing device (1x1 mm): **75 k€** Collimators: **110 k€** Divergence: **100 k€**

TOTAL: 285 k€

Manpower: $2119 k \in$ Components: $10802 k \in$ Contingency: $1436 k \in$ Total: $14357 k \in$

Impact on the science case

Comments from the STAP

- "Polarization of both cold and thermal beams, and with full XYZ analysis of scattered cold neutrons is essential to the science program".
- "The ability to study very small samples is world-beating and should be available from Day 1."
- "Having 60 out of 160 deg. of large detector coverage for the thermal beam is acceptable for initial performance"
- "Provision of SE's including magnetic fields up to at least 10 T and dilution fridges is important."

Performance at 2 MW

- Small crystals: integrated intensity x 6

- Half-polarized / Unpolarized experiments
 - Detector area: +60%
 - Efficiency: +25%

Total: 100% performance increase

Full Scope configuration

Balanced configuration +

Detectors & Monitors		3036		
Monitors	40		2 PSD/TOF monitors	
Large detector 1	2632		156x48 @ 100% eff	
Small detector	244		120x6 @ 100% eff	+10/0 KE
Bottom detector	120		6T2 technology estimate	

Bottom detector: magnetic contributions parallel to B

Total: 14596 k€ + 11% = 16218 k€

Full Scope configuration

SXD:	6.28 sr		
	SENJU: 4 sr		
	TOPAZ: 2.8 sr	5C1: 0.6 sr	Balanced 0.85 sr + (60%)

Full Scope configuration

SXD: 6.28 sr		
SENJU: 4 sr		
TOPAZ: 2.8 sr D19: 1 sr D7: 0.4 sr 672 0.2 sr	5C1: 0.6 sr	Full Scope 2.21 sr (+ 300 %)

Performance at 2 MW

- Small crystals: integrated intensity x 6

- Half-polarized / Unpolarized experiments
 - Detector area: +400%
 - Efficiency: +25%

Total: 500% performance increase

<u>Beyond full scope</u>

- Pulsed magnetic field
 - 60T conical magnet, 140 ms pulse and 20s / day
 - 500 k€ (magnet) + 1000 k€ (capacitor bank)
- Thermal neutron polarization analysis
 - ³He cells if support from ESS
 - Cost TBD
- 15 T vertical magnet
 - Small vertical aperture
 - Possible share with other instruments (BIFROST ?)
 - 1000 k€

Conclusion

- 3 configurations:

Instrument Budget Breakdown

- Each of them are excellent compared to existing single crystal diffractometers !

<u>SM vs ³He cells</u>

³He cells better for large divergence => spectrometer ! 3He cells are easily removed => unpolarized instrument

SM has better FoM No logistic No maintenance costs No additional data correction

=> ideal for a permanently polarized diffractometer

Nuclear Instruments and Methods in Physics Research A 440 (2000) 409}420

L.D. Cussen *, D.J. Goossens , T.J. Hicks