

Internal Structures: Cassette

Consorcio ESS-BILBAO & Instituto de Fusión Nuclear & ESS-AB

L. Mena, A. Aguilar, M. Mancisidor, I. Herranz, R. Vivanco, M. Magán, G. Bakedano, T. Mora, J. Aguilar, P. Luna, K. Sjogreen, U. Oden, F. Sordo, J.M. Perlado, J.L. Martínez

September 23, 2016

イロト イ母 トイヨ トイヨト

 QQ

Table of contents

- **[Introduction](#page-2-0)**
	- [RCC-MRx design rules](#page-7-0)
- [Material: SS 316L, Solution annealed](#page-11-0)
- **[Methodology](#page-18-0)**
	- **•** [Particle transport analysis](#page-19-0)
	- **•** FFM-thermal model
	- **O** [FEM-Mechanical model](#page-24-0)
-

[Radiation damage conditions](#page-27-0)

- **O** [SF1: Design beam](#page-31-0)
	- **•** [P damage analysis](#page-33-0)
	- **S** damage analysis
- **O** [SF1: Nominal beam](#page-38-0)
- [Accidental conditions](#page-42-0)
	- [SF2: Vertical displacement beam](#page-43-0)
	- **[SF3: Shutdown](#page-47-0)**
- **[Conclusions](#page-51-0)**

 QQ

The South Tel

Introduction

Luis Mena (ESS-Bilbao) September 23, 2016 3/52

重

 2990

Introduction: ESS-Bilbao (Internal structure)

Target, shaft and Drive Unit Target Wheel Shaft Drive Unit

Introduction: ESS-Bilbao (Internal structure)

Target, shaft and Drive Unit

Introduction: ESS-Bilbao (Internal structure)

Target, shaft and Drive Unit

Introduction: ESS-Bilbao (FE geometry)

Internal structure

General design rules

Source: RCC-MRx-2012 EDITION with 2013 $1st$ Addendum, Section III, Tome 1, subsection C: Class $N2_{Rx}$ reactor components its auxiliary systems and supports

イロト イ母 トイヨ トイヨト

 QQ

RCC-MRx

RCC-MRx design rules (ranges)

- * Analysis considered:
	- **O** Elastic
	- **O** Inelastic (plasticity, viscoplasticity, creep)

* Loads considered:

- **Internal & external pressures;**
- Weights, forces resulting from the weight, static & dynamic loads, thermal expansion...
- **O** Temperature effects

D. Ω

RCC-MRx

RCC-MRx design rules (classiffication)

* Categories:

- 1st (SF1) and 2nd (SF2): normal operation, including normal operating incidents, start-up and operational shutdown.
- 3rd (SF3): emergency conditions (very low probability of occurrence but which must nonetheless be considered).
- 4th (SF4): highly improbable but whose consequences on component are studied among others for safety reasons.

Type of damages considered (Level A, SF1 & SF2)

- * Damage of type P (due to constant or ramped loads), immediate damages:
	- **O** Immediate or time-dependant (creep) excessive deformation
	- **O** Immediate or time-dependant (creep) plastic instability or fracture
	- **•** Elastic or elastoplastic instability (buckling)
- * Damage of type S (due to cyclic loads), cyclic damages:
	- **O** Progressive deformation (ratcheting)
	- **O** Fatigue

RCC-MRx

RCC-MRx design rules (stresses)

* Categories:

- General Primary Membrane stress (P_m) : mean value of the primary stress tensor within the thickness of the wall.
- **P** Primary Bending stress (P_b) : stress distributed linearly within the thickness (same moment as the primary stress).
- \bullet Local primary membrane stress (P_1) : that is in a small zone adjoining the discontinuity. The membrane stress associated with this stress is noted $(L_m) \rightarrow (P_L) = (P_m) + (L_m)$

RCC-MRx design rules (Post-processing)

* Criterias to check:

- $P_m \leq S_m(\theta_m)$ Source: (RB 3251.112.1)
- \bullet P_L < 1.5 \ast S_m(θ_m) Source: (RB 3251.112.2)
- \bullet P₁ + P_b < 1.5 \ast S_m(θ _m) Source: (RB 3251.112.3)
- $P_m + Q_m \leq S_{em}^A(\theta_m, G_{tm})$ Source: (RB 3251.2121)
- $P_L + P_b + Q_m + F \leq S_{\text{et}}^{A}(\theta, G_t)$ Source: (RB 3251.2122)

 PQQ

(ロ) (倒) (ミ) (言

Material: SS 316L annealed

Source: ESS Materials Handbook (ESS-0028465)

- 3

 Ω

Material: SS 316L

Density

Density ρ is given as a function of temperature θ by the table A3.3S.24.

Density ρ

Physical properties

Coefficients of thermal expansion

The average coefficient of linear thermal expansion α_m between 20 °C and the temperature indicated T and the instantaneous coefficient of thermal expansion α_i are given as a function of T.

Coefficients of linear thermal expansion α_m and α_i

Physical properties

Young´s modulus

The Young's modulus E is given as a function of the temperature T by the formula: $E = 201660 - 84.8$ T and the following figure.

Young modulus E (MPa)

 $\overline{1}$

4 円

 $419C$

Physical properties

Tensile stress-strain curves

Luis Mena (ESS-Bilbao) September 23, 2016 15 / 52

Ξ

 4190

SS 316L annealed

Primary load values. Level A (SF1 and SF2) (Operational limits)

Primary load maximum stress values for SS 316L annealed alloy under Level A. Level D criteria: minimum value between [2.4* S_m] or [0.7* (R_m) min]

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 』 ◇ Q Q @

SS 316L annealed

Secondary load values. Level A (SF1 and SF2) (Operational limits)

Note: all values from 7 dpa are constant.

 Ω

イロト 不優 ト 不差 ト 不差 トー 差

Source: Super MC/MCAM 5.2 User Manual, INEST, CAS; ACAB-2008, NEA Data Bank NEA-1839; Initial MCNP6 release overview, Nuclear Technology (2012)

Luis Mena (ESS-Bilbao) September 23, 2016 18 / 52

画

 QQQ

Particle transport analysis

This analysis in complex geometries need several codes, software and tools to be implemented:

- **O** SuperMCAM or MCAD \rightarrow convert CAD geometries to MCNP format & other codes.
- \bullet MCNPX/6 \rightarrow used for particles transport.
- \bullet ACAB 2008 \rightarrow designed to perform activation and transmutation calculations.
- \bullet GIGANT \rightarrow developed as neutron tool in order to implement complex geometries for activation calculations.

 Ω

Boundary conditions and assumptions

The aim this FEM model is to calculate the evolution of the temperature profile in the spallation material and the cassette.

- **O** Tungsten heat source generated by instantaneous current beam
- \bullet Heat source is activated during the pulse ($t_{pulse} = 2.86 \cdot 10^{-3}$ ms) and disabled during the cooling $(t_{cooling} = 2.56857 s)$

 QQ

Boundary conditions and assumptions

- Imported convection BC on tungsten walls and cassette side from CFD steady state model
- Convection boundary condition to consider the cooling effect of the helium on the inlet channels of the cassette plates. The Dittus-Boelter equation was used:

$$
Nu_D = 0.023 \cdot Re_D^{0.8} \cdot Pr^{0.4}
$$

Luis Mena (ESS-Bilbao) September 23, 2016 21 / 52

Boundary conditions and assumptions

- Perfect thermal between the tungsten bricks and the cassette, maintaining 1mm gap above without heat transfer
- All other surfaces are considered adiabatic
- **•** Symmetry is considered depending on the load case scenario

 \rightarrow \equiv \rightarrow

 \equiv Ω

Mesh

Unlike the CFD problem the required mesh to accurately solve the thermo-mechanical problem is coarser. A non conformal mesh composed by 466,000 elements was employed, most are hexahedrons but some complex bodies were meshed with tetrahedrons.

FEM-Mechanical model

The geometry includes 219 bodies and 218 lineal bounded contacts. The following boundary conditions are considered:

- **•** Frictionless support in the symmetry axis;
- No displacement is allowed along X and Y direction, but Z displacement is free for "B" point.
- No displacement is allowed along Z, but X and Y displacement are free for D.
- ∆ Pressure between inlet and outlet helium path (0.14 Bar).

イロト イ押 ト イヨ ト イヨ)

 Ω

FEM-Mechanical model. Mesh

FEM-Mechanical model

Mesh parameters:

- **O** Nodes: 217221
- **Elements: 32964**
- **•** Average Skewness (indicator of the mesh quality and suitability. Into the excellent mesh quality metrics $(0-0.25)$) ≈ 0.13
- Average Aspect ratio (It is the ratio of longest to the shortest side in a cell. Extremely large values $>> 40$ should be closely examined to determine where they exist and whether the stress results in those areas are of interest or not.) ≈ 3.16
- Element quality (0.3 is termed as good) $\overline{\approx 0.64}$

≮ロ ▶ (伊)

 QQ

→ 唐 × → 唐

Radiation damage conditions

4 0 8

→ 何 ▶ → ヨ ▶ → ヨ ▶

 QQ

- 3

Luis Mena (ESS-Bilbao) September 23, 2016 27 / 52

Radiation damage conditions

Radiation damage conditions

Neutrons have enough energy to produce displacements in the metallic meshes of the elements, degrading the mechanical properties. The damage produced by neutrons play a role in mechanical behavior. Several conclusions based on previous analysis are remarkable:

- \bullet High energy neutrons will produce nuclear cascades similar to neutrons considered on $RCC - MR_x$ damage analysis methodology.
- **•** Ratio Helio/DPA in the elements not in contact with the proton beam are comparable with fission reactors.
- \bullet Helium and hydrogen production are far below values that can produce mechanical effects (swelling).

KOD KARD KED KED B YOUR

The faction of disperse protons that produces damage in the cassette is negligible compared with neutron damage on nominal operational conditions.

Radiation damage conditions

Radiation damage conditions

In the lateral of the cassette with stresses, in the range of 7 dpa after 5 years of operation (but low stress values). The material is far from the mechanical limits.

Load scenarios thermomechanical analysis

Luis Mena (ESS-Bilbao) September 23, 2016 30 / 52

 QQQ

重

 2990

SF1: Normal operation conditions. Beam profiles

The beam is considered synchronized with the wheel and hitting in the center of the cassette.

- \bullet He mass flow: 3 kg/s \rightarrow 0.0833 kg/s per cassette.
- Beam Energy: 2.0 GeV (Max. Beam Energy: 2.2 GeV) \bullet
- **•** Pulse repetition rate: 14 Hz
- Beam energy per pulse: 357 kJ (Max. Energy per pulse: 371 kJ) \bullet

P damage analysis. Primary loads

Loads: death weight and the ΔP (inlet and outlet helium flow \rightarrow 0.14 bar)

Equivalent Von-Mises stress Primary load Limit at 300° C is $S_m = 106$ MPa

P damage analysis. Secondary loads

Loads: death weight, ΔP (inlet and outlet helium flow \rightarrow 0.14 bar) and temperature distribution.

Temperature profile

P damage analysis. Secondary loads

Loads: death weight, ΔP (inlet and outlet helium flow \rightarrow 0.14 bar) and temperature distribution. Peak value \approx 730 MPa, normal values between 324-480 MPa.

P damage analysis. Secondary loads

Loads: death weight, ΔP (inlet and outlet helium flow \rightarrow 0.14 bar) and temperature distribution.

Directional Z deformation Less than 1 mm

S damage analysis. Cyclic loads

Time dependence load: temperature distribution. $\Delta\mathcal{T} < 2.5^o$ C (not produce significant stresses)

不自主

→ 伊

э

 QQ

∢者

舌

×. ×

Luis Mena (ESS-Bilbao) September 23, 2016 38 / 52

造

 QQ

K ロ ⊁ K 伊 ⊁ K 君 ⊁ K 君 ⊁

SF1: Nominal beam. Beam profiles

The beam is considered synchronized with the wheel and hitting in the center of the cassette.

- \bullet He mass flow: 3 kg/s \rightarrow 0.0833 kg/s per cassette.
- Beam Energy: 2.0 GeV (Max. Beam Energy: 2.2 GeV) \bullet
- **•** Pulse repetition rate: 14 Hz
- Beam energy per pulse: 357 kJ (Max. Energy per pulse: 371 kJ) \bullet

P damage analysis. Secondary loads. Temperature profile

Comparing with design beam temperature, the profile is quite similar but T_{nom} is 33 ° C less than T_{design}

P damage analysis. Secondary loads. Equivalent Von Mises stress

Comparing with design beam stress, σ_{nom} is 125 MPa less than σ_{design} , but in any case, both are far from $S_m^{et} = 1817 MPa$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 OQ

 \equiv

Luis Mena (ESS-Bilbao) September 23, 2016 42 / 52

SF2: Vertical displacement beam

4 日下

- 4 重 8 - 4 重 8

画

 QQ

Luis Mena (ESS-Bilbao) September 23, 2016 43 / 52

SF2: Vertical displacement beam

Same design beam, with a positive vertical displacement of 10 mm from the center of the cassette.

- \bullet He mass flow: 3 kg/s \rightarrow 0.0833 kg/s per cassette.
- \bullet Beam Energy: 2.0 GeV (Max. Beam Energy: 2.2 GeV)
- **•** Pulse repetition rate: 14 Hz
- Beam energy per pulse: 357 kJ (Max. Energy per pulse: 371 kJ)

4 D F ∢母 ∍ \rightarrow QQ

SF2: Vertical displacement beam. Temperature profile

Increase of 42 \degree C compared with the design beam case. Only secondary loads have been considered, due to primary loads do not change (Pressure, weight...).

SF2: Vertical displacement beam. Equivalent Von-Mises stress

The maximum stress level far below the S_m^{et} limit so the component clearly fulfill the Level A requirements. Peak value \approx 790 MPa, normal values between 350-525 MPa.

SF3: Shutdown

Luis Mena (ESS-Bilbao) September 23, 2016 47 / 52

重

 2990

イロト イ部 トイヨ トイヨト

SF3: Shutdown

- \bullet Helium flow and beam are stop. On this conditions, the target remove the heat by radiation from its external surfaces so, the temperature evolves slowly up to the equilibrium value after 10^4 s.
- O The profile is relative smooth due to the low decay heat generation (\sim 30 kW).
- Primary loads are not considered because the helium is not flowing (all the faces are under the same pressure)
- Maximum value is far below the S_m^{et} limit for the material.

 Ω - 28

SF3: Shutdown. Temperature profile in the maximum of temperature (1E+4 s after shutdown)

SF3: Shutdown. Von-Mises stress in the maximum of temperature (1E+4 s after shutdown)

The maximum stress level far below the S_m^{et} limit so the component clearly fulfill the Level A requirements.

Conclusions

イロト イ部 トイヨ トイヨト

画

 2990

Luis Mena (ESS-Bilbao) September 23, 2016 51 / 52

Conclusions

Conclusions

The analysis described in the previous sections can be summarized in the following points:

- **•** The complete analysis of the component (radiation damage, temperature distribution and mechanical stress analysis) has been completed.
- **•** The radiation damage for the component is in an acceptable level for 5 year operation.
- Temperature distributions will not produce significant deformations that change its functionality.
- **In all the scenarios considered in the design process fulfill RCC-MR**x requirement with significant safety margin.

 QQ