
Redis	and	the	Configura1on	Stub		

Afonso	Mukai	
Data	Management	Group	–	DMSC	

www.europeanspalla1onsource.se	
7	December	2016	

Agenda	

•  Environment	setup	and	check	
•  Introduc1on	to	Redis	
•  Redis	data	types	
•  Addi1onal	Redis	func1onality	
•  Python	and	Redis	
•  Nomenclature:	stubs	and	fakes	
•  The	stub	configura1on	service	
•  Final	remarks	

2	

Environment	setup	

•  ECW-DM	VirtualBox	virtual	machine	provided	
•  CentOS	7,	based	on	ICS	development	machine	image	
•  In	VirtualBox:	
–  File,	Import	Appliance…	

•  If	it	fails,	extract	the	contents	of	the	.ova	file	with	tar:	
$ tar xf ECW-DM.ova
–  Import	the	extracted	file	

•  Start	VM	

3	

Redis	

4	

Redis:	overview	

•  REmote	DIc1onary	Server	
•  A	key-value	store	
•  Values	can	have	more	complex	data	types	
•  Easy	to	install	and	run	(available	from	EPEL)	
•  Clients	for	many	languages	
•  Includes	publish-subscribe	func1onality	
•  Built-in	Lua	interpreter	

5	

Redis:	persistence	and	configura1on	

•  In-memory	database,	with	configurable	persistence	
–  By	default,	snapshots	saved	to	disk	a\er	an	interval	
dependent	on	the	number	of	keys	that	changed	

–  Alterna1vely,	can	update	an	append-only	file	on	disk	at	
every	change	

•  These	and	other	configura1ons	can	be	changed	in	
the	/etc/redis.conf	file	

6	

Hands-on	ac1vity:	Installing	Redis	

•  On	CentOS:	
$ sudo yum install epel-release
$ sudo yum install redis

•  From	source	code:	
–  Download	released	package	from	h_ps://redis.io	
$ tar xf redis-3.2.5.tar.gz
$ cd redis-3.2.5
$ make
$ sudo make install

7	

Hands-on	ac1vity:	Checking	installa1on	

•  Star1ng	server:	on	one	terminal	window	or	tab:	
$ redis-server

•  Command-line	client:	on	another	terminal	window	
or	tab:	
$ redis-cli
> set mykey value
> get mykey
> keys *
> flushdb

8	

Redis	data	types	

•  String	
•  List	
•  Set	
•  Sorted	set	
•  Hash	
•  Using	string	and	special	commands:	
–  Bit	array	
–  HyperLogLog	(set	cardinality	es1ma1on)	

9	

Redis:	keys	

•  Each	value	is	iden1fied	by	a	key	
•  Keys	are	strings	
•  Values	can	be	anything	
•  Commands	operate	on	keys	and	are	specific	to	a	
data	type	

•  Maximum	allowed	size	is	512	MB	
•  Can	be	set	to	expire	a\er	a	certain	1me	elapses	

10	

Redis:	strings	

•  Simplest	data	type	
•  Can	be	a	string	of	any	type	
•  Maximum	value	size	is	512	MB	
•  Can	be	used	as	a	bitmap	(setbit,	getbit)	
•  Supports	some	addi1onal	opera1ons	on	specialised	
value	types:	
–  Atomic	increase	and	decrease	on	integers	
–  HyperLogLogs	are	encoded	as	strings	

11	

Redis:	sets	and	hashes	

•  Sets	
–  Store	unique	strings	
–  Support	set	opera1ons	such	as	membership	test,	union,	
intersec1on	and	difference	

–  Values	are	not	ordered;	ordered	set	type	a_aches	a	
floa1ng	point	value	to	each	member,	allowing	for	easy	
ranking	

•  Hashes	
–  Store	field-value	pairs	under	each	key	

12	

Hands-on	ac1vity:	Adding	data	to	Redis	

•  On	the	command-line	interface:	
> set instrument nmx
> get instrument
> set instrument:scan 1
> set instrument:user afonso

•  Keys:
> keys instrument:*
> exists instrument:user
> type instrument:user

13	

Hands-on	ac1vity:	Adding	data	to	Redis	

•  Commands	for	integer	values:	
> incr instrument:scan
> incrby instrument:scan 10
> decr instrument:scan
> get instrument:scan

•  Using	strings	as	bitmaps	
> setbit instrument:interlocks 0 1
> setbit instrument:interlocks 7 1
> getbit instrument:interlocks 7

14	

Hands-on	ac1vity:	Adding	data	to	Redis	

•  Sets:	
> sadd instrument:motors ma	
> sadd instrument:motors mb
> smembers instrument:motors
> sismember instrument:motors mc
> sadd newinstrument:motors mc md me
> sunion instrument newinstrument
> sinter instrument newinstrument
> spop instrument:motors

15	

Hands-on	ac1vity:	Adding	data	to	Redis	

•  Hashes	
> hset motor:ma type nice
> hset motor:ma protocol ca
> hmset motor:mb type nice protocol pva
> hgetall motor:ma
> hget motor:mb type
> hmget motor:mb type protocol
> hlen motor:ma

16	

Hands-on	ac1vity:	Adding	data	to	Redis	

•  Key	expira1on:	
> del instrument:user
> expire instrument 15
> ttl instrument
> get instrument

•  Delete	keys	of	current	database:	
> flushdb

•  Selec1ng	database	
> select 1

17	

Redis:	transac1ons	

•  Redis	commands	are	atomic	(Redis	is	single-
threaded)	

•  Transac1ons:	execute	a	group	of	commands	in	a	
single	step,	sequen1ally	and	atomically:	
–  Commands	are	executed	in	order	
–  No	other	client’s	commands	are	executed	during	it	
–  All	or	none	executed	

•  Scripts	are	transac1onal	

18	

Redis:	publish/subscribe	

19	

Redis	

Subscriber	
channel1	

Subscriber	
channel1	
channel2	

Publisher	
channel1	

channel2	

Redis:	publish/subscribe	

•  Clients	subscribe	to	channels	iden1fied	by	a	name	
•  Publishers	write	messages	to	a	given	channel	
•  Subscribers	will	then	receive	messages	from	the	
channels	they	subscribed	to	
– Messages	sent	before	the	subscrip1on	start	or	while	client	
is	disconnected	are	missed	

•  Pa_ern-matching	can	be	used	when	subscribing	
•  Messages	are	sent	to	all	databases	in	the	server	

20	

Redis:	keyspace	no1fica1ons	

•  Clients	can	subscribe	to	no1fica1ons	of	changes	to	
the	data	set	

•  Feature	has	to	be	ac1vated	in	configura1on	(either	in	
redis.conf	or	user	the	CONFIG	SET	command)	

•  No1fica1ons	can	be	ac1vated	for	a	subset	of	the	
event	types	

•  Different	commands	generate	different	messages,	
clients	can	filter	them	using	the	subscrip1on	string	

21	

Hands-on	ac1vity:	Publish/subscribe	

•  Open	three	command-line	clients	
•  Subscriber:	
> subscribe channel1

•  Pa_ern-matching	subscriber:	
> psubscribe channel*

•  Publisher:	
> publish channel1 hello
> publish channel1 “Welcome to ESS”
> publish channel2 “no receiver”

22	

Hands-on	ac1vity:	Keyspace	no1fica1ons	

•  Enable	all	possible	keyspace	no1fica1ons:	
> config set notify-keyspace-events KEA

•  Subscriber:	
> psubscribe __key*__:*

•  In	another	client	session:	
> set newkey newvalue
> expire newkey 5
> set anotherkey anothervalue
> del anotherkey

23	

Redis:	clients	

24	

Hands-on	ac1vity:	redis-py	

•  redis-py	is	the	recommended	Python	client;	install	it	
using	pip:	
$ sudo pip install redis

•  Import	it:	
$ ipython
> import redis
> print(redis.VERSION)

25	

Hands-on	ac1vity:	redis-py	

•  Basic	commands:	
> r = redis.StrictlyRedis()
> r.keys(‘*’)
> r.set(‘instrument’, ‘loki’)
> r.hset(‘motor:mf’, ‘type’, ‘nice’)
> r.hset(‘motor:mf’, ‘protocol’,
‘custom’)

> r.hgetall(‘motor:mf’)

26	

Hands-on	ac1vity:	redis-py	

•  Transac1ons	with	pipelines:	
> p = r.pipeline()
> p.set(‘index’, 2)
> p.incr(‘index’)
> p.incrby(‘index’, 10)
> p.execute()
> r.get(‘index’)

27	

Hands-on	ac1vity:	redis-py	

•  Publish-subscribe:	
> r.publish(‘channel3’, ‘message 1’)
> ps = r.pubsub()
> ps.subscribe(‘channel3’)
> r.publish(‘channel3’, ‘message 2’)
> r.publish(‘channel3’, ‘message 3’)
> ps.get_message()
> ps.get_message()

28	

Hands-on	ac1vity:	redis-py	

•  Adding	a	message	handler	
> def handler(message):  
 print(‘inside handler’, message)

> ps.subscribe(**{‘channel4’: handler})
> r.publish(‘channel4’, ‘message 1’)
> r.publish(‘channel4’, ‘message 2’)
> ps.get_message()
> ps.get_message()

29	

Test	doubles	and	nomenclature	

•  Test	doubles	subs1tute	a	real	object	during	tes1ng	
•  Meszaros	classifica1on:	
–  Stubs	provided	predefined	answers	to	requests,	and	will	
usually	not	respond	to	anything	else	

–  Fake	objects	have	a	working	implementa1on	with	
shortcuts	

•  The	stub	configura1on	service:	
–  Not	really	a	unit	test	double	
–  Probably	more	a	fake	than	a	stub	

	

30	

The	stub	configura1on	service	

•  Where	client	so\ware	gets	configura1on	and	
metadata,	such	as:	
– What	detector	data	should	be	aggregated,	protocols	to	
use,	addresses	

– What	PVs	should	be	aggregated	
–  User	and	experiment	metadata:	what	experiment	is	
running	at	the	instrument,	who	the	current	user	is	

•  As	we	have	not	made	a	decision	about	it	yet,	a	place	
to	put	the	required	configura1on	for	now,	gathering	
requirements	in	the	process	

31	

Stub	configura1on	service:	architecture	

32	

Configura1on	
Service	

Redis	

User	
DB	

Channel
Finder	

Client	

Client	

Stub	configura1on	service:	clients	

•  Use	the	service	to	get	configura1on	informa1on,	
without	having	to	hard-code	it	into	so\ware	

•  Iden1fy	what	configura1on	informa1on	is	needed	
and	where	in	the	client	code	

•  Access	to	configura1on	should	be	kept	isolated	in	
order	to	be	easily	changed	

•  The	service	allows	mul1ple	clients	to	get	the	same	
configura1on	

33	

Stub	configura1on	service:	sources	

•  Currently	reading	data	from	Redis	
–  Arbitrarily	structured	keys	
–  Arbitrary	data	

•  No1fica1on	experiment	with	Kaka	
•  Could	add	ChannelFinder	for	PV	informa1on,	using	
proper1es	or	tags,	for	example.	

34	

Hands-on	ac1vity:	Configura1on	service	

•  Clone	the	Git	repository:	
$ git clone https://bitbucket.org/
europeanspallationsource/stub-config-
service

$ cd stub-config-service
$ ls
$ cd service/sample_config
$ python add_data.py localhost

35	

Hands-on	ac1vity:	Configura1on	service	

•  Start	the	service:	
$ cd ..
$ python configservice.py

•  Open	another	terminal	tab	or	window:	
$ cd stub-config-service/client
$ ipython	

36	

Hands-on	ac1vity:	Configura1on	service	

•  Gelng	configura1ons:	
–  import configclient
–  c=configclient.ConfigClient(‘localhost’)
–  c.get_config(‘instrument1’)
–  config = c.get_config(‘instrument2’)

•  The	subscrip1on	func1ons	are	an	Apache	Kaka	
no1fica1on	experiment	

37	

Hands-on	ac1vity:	Using	Kaka	in	the	VM	

•  Start	ZooKeeper	and	Kaka:	
$ sudo systemctl start zookeeper
$ sudo systemctl start kafka

•  Installed	in	/opt/dm_group	

38	

Final	remarks	and	discussion	

•  Current	project	is	very	simple,	no	changes	for	some	
1me	

•  PSI	developed	a	C++	library	to	get	configura1on	data	
from	Redis:	
h_ps://bitbucket.org/europeanspalla1onsource/
configura1on-manager	

•  Should	we	get	PV	data	from	ChannelFinder?	
•  What	kind	of	configura1on	is	required	for	
experiment	control?	

	
39	

Final	remarks	and	discussion	

•  What	protocol	should	be	used	for	communica1on	
with	the	service	(currently	uses	ZeroMQ)?	REST?	

•  Do	we	need	automa1c	configura1on	change	
no1fica1ons?	

40	

References	

•  h_ps://redis.io	
•  h_p://openmymind.net/redis.pdf	
•  h_ps://github.com/andymccurdy/redis-py	
•  h_ps://bitbucket.org/europeanspalla1onsource/
stub-config-service	

•  Humble,	J.	and	Farley,	D.	Con1nuous	Delivery.	
Addison-Wesley	Professional,	2010.	

•  h_p://mar1nfowler.com/ar1cles/
mocksArentStubs.html	

41	

