(: \ EUROPEAN
SPALLATION
SOURCE

Redis and the Configuration Stub

Afonso Mukai
Data Management Group — DMSC

www.europeanspallationsource.se
7 December 2016

Environment setup and check
Introduction to Redis

Redis data types

Additional Redis functionality
Python and Redis
Nomenclature: stubs and fakes
The stub configuration service
Final remarks

EUROPEAN
SPALLATION

SOURCE

EUROPEAN
SPALLATION
SOURCE

Environment setup

e ECW-DM VirtualBox virtual machine provided
 CentOS 7, based on ICS development machine image
* In VirtualBox:

— File, Import Appliance...

e |fit fails, extract the contents of the .ova file with tar:
$ tar xf ECW-DM.ova

— Import the extracted file

e Start VM

‘: \ EUROPEAN
SPALLATION

SOURCE

~ redis Commands Clients Documentation Community Download Support License

Redis is an open source (BSD licensed), in-memory data structure store, used as a database,
cache and message broker. It supports data structures such as strings, hashes, lists, sets,
sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius
queries. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different
levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic
partitioning with Redis Cluster. Learn more —

Try it Download it Quick links

Ready for a test drive? Check this Redis 3.2.5 is the latest stable version. Follow day-to-day Redis on Twitter
interactive tutorial that will walk you Interested in release candidates or and GitHub. Get help or help others
through the most important features ~ unstable versions? Check the by subscribing to our mailing list, we
of Redis. downloads page. are 5,000 and counting!

Redis News

o BB Redis 4.0 RC1 is out! My blog post about it is here: https://t.co/sv37Um6Pgb

EUROPEAN
SPALLATION
SOURCE

Redis: overview

* REmote Dlctionary Server

* A key-value store

* Values can have more complex data types

e Easy toinstall and run (available from EPEL)
e Clients for many languages

* Includes publish-subscribe functionality

e Built-in Lua interpreter

Redis: persistence and configuration

* In-memory database, with configurable persistence

— By default, snapshots saved to disk after an interval
dependent on the number of keys that changed

— Alternatively, can update an append-only file on disk at
every change
* These and other configurations can be changed in
the /etc/redis.conf file

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: Installing Redis

* On CentOS:

$ sudo yum install epel-release
$ sudo yum install redis

e From source code:

— Download released package from https://redis.io

$ tar xf redis-3.2.5.tar.gz
$ cd redis-3.2.5

$ make

$ sudo make install

d :

o) iz
Hands-on activity: Checking installation

e Starting server: on one terminal window or tab:

$ redis-server

e Command-line client: on another terminal window
or tab:
$ redis-cli
> set mykey value
> get mykey
> keys *
> flushdb

o))
Redis data types

* String

* List

* Set

e Sorted set
* Hash

e Using string and special commands:

— Bit array
— HyperLoglLog (set cardinality estimation)

EUROPEAN
SPALLATION
SOURCE

EIES

* Each value is identified by a key
* Keys are strings
* Values can be anything

* Commands operate on keys and are specific to a
data type

 Maximum allowed size is 512 MB
* Can be set to expire after a certain time elapses

10

EUROPEAN
SPALLATION
SOURCE

Redis: strings

* Simplest data type

e Can be a string of any type

* Maximum value size is 512 MB

* Can be used as a bitmap (setbit, getbit)

e Supports some additional operations on specialised
value types:
— Atomic increase and decrease on integers
— HyperLoglogs are encoded as strings

11

EUROPEAN
SPALLATION
SOURCE

Redis: sets and hashes

* Sets
— Store unique strings

— Support set operations such as membership test, union,
intersection and difference

— Values are not ordered; ordered set type attaches a
floating point value to each member, allowing for easy
ranking

e Hashes

— Store field-value pairs under each key

12

Hands-on activity: Adding data to Redis

* On the command-line interface:
>set instrument nmx
> get i1nstrument
>set instrument:scan 1
>set instrument:user afonso
* Keys:
>keys instrument:*
>exlsts instrument:user

> type instrument:user

»

EUROPEAN
SPALLATION
SOURCE

13

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: Adding data to Redis

e Commands for integer values:
> incr instrument:scan
> incrby instrument:scan 10
> decr instrument:scan
> get instrument:scan
e Using strings as bitmaps
>setbit instrument:interlocks 0 1
>setbit instrument:interlocks 7 1

>getbit instrument:interlocks 7

<
d .

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: Adding data to Redis

* Sets:

> sadd instrument:motors ma

> sadd instrument:motors mb

> smembers instrument:motors

> sismember instrument:motors mc

> sadd newinstrument:motors mc md me
> sunion instrument newinstrument
>sinter instrument newinstrument

> spop instrument:motors

15

o))
Hands-on activity: Adding data to Redis

* Hashes
> hset motor:ma type nice
> hset motor:ma protocol ca
> hmset motor:mb type nice protocol pva
> hgetall motor:ma
> hget motor:mb type
> hmget motor:mb type protocol
>hlen motor:ma

16

o))
Hands-on activity: Adding data to Redis

* Key expiration:
>del instrument:user
>explire instrument 15
>ttl instrument
> get instrument

* Delete keys of current database:
> flushdb

e Selecting database
>select 1

)‘ 17

EUROPEAN
SPALLATION
SOURCE

Redis: transactions

* Redis commands are atomic (Redis is single-
threaded)

* Transactions: execute a group of commands in a
single step, sequentially and atomically:

— Commands are executed in order
— No other client’s commands are executed during it

— All or none executed

e Scripts are transactional

18

EUROPEAN
SPALLATION

Redis: publish/subscribe

Subscriber
channell
channell
channel2
Subscriber
channell

channel2

19

Redis: publish/subscribe

e Clients subscribe to channels identified by a name
* Publishers write messages to a given channel

* Subscribers will then receive messages from the
channels they subscribed to

— Messages sent before the subscription start or while client
is disconnected are missed

e Pattern-matching can be used when subscribing
 Messages are sent to all databases in the server

20

Redis: keyspace notifications

* Clients can subscribe to notifications of changes to
the data set

* Feature has to be activated in configuration (either in
redis.conf or user the CONFIG SET command)

 Notifications can be activated for a subset of the
event types

e Different commands generate different messages,
clients can filter them using the subscription string

21

EUROPEAN
SPALLATION

SOURCE

* Open three command-line clients

e Subscriber:
> subscribe channell

e Pattern-matching subscriber:
> psubscribe channel*

* Publisher:
>publish channell hello
>publish channell “Welcome to ESS”
>publish channel2 “no receiver”

-
> :

(o)) e
Hands-on activity: Keyspace notifications

* Enable all possible keyspace notifications:
>config set notify-keyspace-events KEA

* Subscriber:
>psubscribe @ key* ¥
* In another client session:
> set newkey newvalue
> explre newkey 5
> set anotherkey anothervalue
>del anotherkey

23

Redis: clients

Clients

ActionScript
Common Lisp
emacs lisp
Haskell

Lua

OCaml

R

Scheme

Browse by language:

Bash
Crystal
Erlang
Haxe
Matlab
Pascal
Racket
Smalltalk

Fancy

mruby
Perl
Rebol
Swift

The recommended client(s) for a language are marked with a

C#
Dart
gawk
Java
Nim
PHP
Ruby
Tcl

C++

Delphi

GNU Prolog
Julia
Node.js
Pure Data
Rust

VB

Clients with some activity in the official repository within the latest six months are marked with a ©.

Want your client listed here? Please fork the redis-doc repository and edit the clients.json file. Submit a pull
request and you are done.

Clojure
Elixir

Go

Lasso
Objective-C
Python
Scala

VCL

‘; EUROPEAN
SPALLATION

SOURCE

24

o)
Hands-on activity: redis-py

* redis-py is the recommended Python client; install it
using pip:
$ sudo pip install redis
* |Import it:
$ ipython
> import redis
>print(redis.VERSION)

?‘ 25

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: redis-py

* Basic commands:
>r = redis.StrictlyRedis()
>r.keys('*")
>r.set(’instrument’, ‘loki’)
>r.hset(’motor:mf’, ‘type’, ‘nice’)
>r.hset('motor:mf’, ‘protocol’,
‘custom’)

>r.hgetall(‘motor:mf’)

26

o)
Hands-on activity: redis-py

* Transactions with pipelines:
>p = r.pipeline()
>p.set(’index’, 2)
>p.lncr(‘index’)
>p.incrby(‘index’, 10)
> p.execute()
>r.get(’index’)

27

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: redis-py

* Publish-subscribe:
>r.publish(’channel3’, ‘message 1')
>ps = r.pubsub()
>ps.subscribe(‘channel3’)
>r.publish(’‘channel3’, ‘message 2')
>r.publish(’channel3’, ‘message 3')
> ps.get message()
> ps.get message()

28

EUROPEAN
SPALLATION
SOURCE

Hands-on activity: redis-py

* Adding a message handler

>def handler(message):
print(‘inside handler’, message)

>ps.subscribe(**{‘channeld4’: handler})
>r.publish(’‘channeld4’, ‘message 1')
>r.publish(’channeld4’, ‘message 2')

> ps.get message()

>ps.get message()

29

Test doubles and nomenclature

* Test doubles substitute a real object during testing
* Meszaros classification:

— Stubs provided predefined answers to requests, and will
usually not respond to anything else

— Fake objects have a working implementation with
shortcuts

* The stub configuration service:
— Not really a unit test double
— Probably more a fake than a stub

30

EUROPEAN
SPALLATION
SOURCE

The stub configuration service

 Where client software gets configuration and
metadata, such as:

— What detector data should be aggregated, protocols to
use, addresses

— What PVs should be aggregated

— User and experiment metadata: what experiment is
running at the instrument, who the current user is

* As we have not made a decision about it yet, a place
to put the required configuration for now, gathering
requirements in the process

31

Stub configuration service: architecture

Client

Client

Configuration
Service

\ /

Channel
Finder

32

Stub configuration service: clients

* Use the service to get configuration information,
without having to hard-code it into software

* |dentify what configuration information is needed
and where in the client code

e Access to configuration should be kept isolated in
order to be easily changed

* The service allows multiple clients to get the same
configuration

33

EUROPEAN
SPALLATION
SOURCE

Stub configuration service: sources

* Currently reading data from Redis
— Arbitrarily structured keys
— Arbitrary data

* Notification experiment with Kafka

* Could add ChannelFinder for PV information, using
properties or tags, for example.

34

Hands-on activity: Configuration service

* Clone the Git repository:

$ git clone https://bitbucket.org/
europeanspallationsource/stub-config-
service

$ cd stub-config-service

$1s

$ cd service/sample config

$ python add data.py localhost

35

Hands-on activity: Configuration service

e Start the service:

$cd ..
$ python configservice.py

 Open another terminal tab or window:

$ cd stub-config-service/client
$ ipython

<
® 36

Hands-on activity: Configuration service

* Getting configurations:
— import configclient
— c=configclient.ConfigClient(‘localhost’)
— c.get config(‘instrumentl’)

— config = c.get config(’instrument2’)

* The subscription functions are an Apache Kafka
notification experiment

-
® :

o)
Hands-on activity: Using Kafka in the VM

e Start ZooKeeper and Kafka:
$ sudo systemctl start zookeeper
$ sudo systemctl start kafka

* |nstalled in /opt/dm_group

38

Final remarks and discussion

e Current project is very simple, no changes for some
time

e PS| developed a C++ library to get configuration data
from Redis:
https://bitbucket.org/europeanspallationsource/
configuration-manager

e Should we get PV data from ChannelFinder?

 What kind of configuration is required for
experiment control?

39

Final remarks and discussion

* What protocol should be used for communication
with the service (currently uses ZeroMQ)? REST?

Do we need automatic configuration change
notifications?

40

EUROPEAN
SPALLATION
SOURCE

References

e https://redis.io

 http://openmymind.net/redis.pdf

e https://github.com/andymccurdy/redis-py

* https://bitbucket.org/europeanspallationsource/
stub-config-service

* Humble, J. and Farley, D. Continuous Delivery.
Addison-Wesley Professional, 2010.

e http://martinfowler.com/articles/
mocksArentStubs.html

41

